
On the generalised Kanzaki force field of extended defects in crystals, with
applications to the modelling of edge dislocations

B. Gurrutxaga-Lerma
School of Metallurgy and Materials, University of Birmingham, Elms Road, B15 2SE Birmingham, UK and

Trinity College, University of Cambridge, CB2 1TQ Cambridge, UK∗

J. Verschueren
Department of Materials, Imperial College London, SW7 2AZ London, UK

The Kanzaki forces and their associated multipolar moments are a standard way of representing
point defects in an atomistically informed way in the continuum. In this article, the Kanzaki force
approach is extended to other crystalline defects. The article shows how the resulting Kanzaki
force fields are to be computed for any general extended defect by first computing the relaxed
defect’s structure, and then defining an affine mapping between the said defect structure and the
original perfect lattice. This methodology can be employed to compute the Kanzaki force field of
any mass-conserving defect, including dislocations, grain and twin boundaries, or cracks. Particular
focus is then placed on straight edge dislocation in fcc and bcc pure metals, which are studied
along different crystallographic directions. The particular characteristics of these force fields are
discussed, drawing a distinction between the slip Kanzaki force field associated with the Volterra
disregistry that characterises the dislocation, and the core Kanzaki force field associated with the
specific topology of the dislocation’s core. The resulting force fields can be employed to create
elastic models of the dislocation that, unlike other regularisation procedures, offer a geometrically
true representation of the core and the elastic fields in its environs, capturing all three dimensional
effects associated with the core.

I. INTRODUCTION

This article concerns the representation of gen-
eral crystalline defects as Kanzaki force distributions,
and its application to the modelling of edge disloca-
tions. The Kanzaki forces are typically associated
with point defects, where they are defined as the
forces that would have to be applied on a perfect
harmonic lattice to generate the point defect’s dis-
placement field1–4. As such, they facilitate study-
ing the influence of the point defect in the contin-
uum, where the Kanzaki forces, or one or more of
their multipolar moment tensors3,5,6, may be directly
applied to model the point defect. In that sense,
Kanzaki forces act as source terms: they are the dy-
namic source that generates the defect in a defect-free
medium, be it a discrete harmonic lattice3,7–9 or an
elastic continuum10,11. Because they stem from atom-
istic calculations10,12,13, but are commonly employed
in the continuum and other higher level models, they
can be regarded as a true multiscale modelling tool,
that enables transferring topological and mechanical
information of the point defect from atomistic systems
to higher lengthscales, where they have been success-
fully employed to study numerous phenomena involv-
ing point defects.9,10,14–20

Recently, the authors21 produced a formalism that
extends the Kanzaki force approach to crystallo-
graphic dislocations. The use of body forces to rep-
resent dislocations has its roots in lattice dynamics
studies of dislocation motion, where screw disloca-
tions of the Volterra kind are often represented as dis-
tributed forces acting, atom by atom, across the dis-
location’s nominal slip plane in a perfect lattice22–26

Even though, in actuality, the dislocation is a topolog-
ical defect characterised by a Volterra disregistry and
a relaxed core27 (and as such it can only be observed
as part defective lattice28), in lattice dynamics models

the dislocation is represented on a perfect lattice via
the forces that would have to be applied on the orig-
inal, defect-free lattice to generate the dislocation’s
topology (q.v.7,25).

The Kanzaki force model od screw dislocations dis-
cussed in21 relies on characterising the atomistic dis-
placement map of the dislocation relative to the per-
fect lattice. This mapping is obtained from a struc-
tural minimisation of the dislocation and its core in
atomistic calculations. The Kanzaki forces are then
computed in the harmonic approximation as the con-
volution of the force constant matrix with the atom-
istic displacement map. As with the Kanzaki forces
of points defects, these Kanzaki forces serve as source
terms: when applied on a perfect harmonic lattice,
they generate the displacement field of the screw dislo-
cation. Unlike in lattice dynamics calculations, where
only Volterra screw dislocations with an infinitely thin
core could be modelled24,25, the approach discussed
in21 enabled the modelling of the dislocation core as
predicted by the atomistic models, both in a har-
monic lattice and in the linear elastic continuum. This
is because, as was discussed in21, in the long wave
limit that the Kanzaki forces of the screw disloca-
tion can be shown to converge to the linear elastic
Burridge-Knopoff force representation29–31 of a dislo-
cation. This means that the Kanzaki forces can be
used as source terms in the atomistic lattice or in the
linear elastic continuum, thereby facilitating a linear
elastic model of the core.

This article generalises these ideas further, expand-
ing the concept of the Kanzaki force field to any ex-
tended defect. The generalised Kanzaki force field of
a defect, defined in section II, is computed in a perfect
crystalline lattice under the harmonic approximation,
and can be employed as a source term of the said
defect in any lattice dynamics or lattice statics cal-
culations, or as a source term to model the defect in
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the elastic continuum. As is discussed in section II,
the latter is true because the elastic continuum is a
specific limit of the harmonic lattice approximation.
In using the Kanzaki force field to model the defect
in the continuum, the resulting elastic field is atom-
istically motivated, true to the actual topology of the
defect (i.e., the geometry of the defect is directly cap-
tured by the Kanzaki force field, without recourse to
approximations or simplifications), and energetically
accurate within the harmonic approximation. Thus,
the Kanzaki force field of a defect emerges as an at-
tractive, simple, and very accurate way of studying
crystalline defects.

As means of an example, from section III onward
the article focuses on studying the Kanzaki force field
of edge dislocations in fcc Cu and Al, and in bcc Ta
and W. This is done because, aside from the clear in-
terest edge dislocations have as carriers of plasticity32,
the lack of in-plane symmetries of edge dislocations
means there is currently no lattice dynamics model
of edge dislocations available26. In the past, this has
meant that all lattice dynamics studies of dislocation
mobility were limited to screw dislocations22,23,25,26.
This article offers a rigorous way of extending such
models to edge dislocations, and furthermore, offers a
complete account of how to model the core of edge dis-
locations in different metals and along different crys-
tallographic orientations, in an atomistically informed
way and without recourse to phenomenological regu-
larisations such as the Peierls-Nabarro model27. Sec-
tion V explains how to use these Kanzaki force fields
to model edge dislocations in the linear elastic con-
tinuum, how to use it to obtain an unambiguous def-
inition of the core energy that is independent of the
concept of a core radius, and how to estimate core ef-
fects based on the core’s multipolar moments, which
are derived in the section. Section VI offers the arti-
cle’s closing remarks.

Albeit in the sequel the Kanzaki force field is ap-
plied to edge dislocations, the methodology described
here is entirely general, and can be applied to any
other extended defect, as long as the harmonic lattice
approximation remains acceptable. Future work will
focus on studying twin and grain boundaries.

II. GENERALISED KANZAKI FORCE FIELD

The Kanzaki force field is defined in terms of an
affine mapping33 in a crystalline lattice in the har-
monic approximation. In the following, these two con-
cepts are explained.

A. Affine mapping

Consider a perfect crystalline lattice in static equi-
librium, with Ω0 ⊂ R3 the set of all atomic positions
in the lattice. Let the equilibrium position of the k-th
atom in the l-th unit cell of the crystal be given by
R(l, k) ∈ Ω0 relative to some reference.

Let a defect be injected in the perfect lattice Ω0.
As a result, each atom in the lattice is displaced by a

certain amount off their original perfect lattice posi-
tions to their new, fully relaxed, equilibrium positions,
which define Ωd ⊂ R3 as the set of all atomic positions
in the defective lattice Ωd. The new position of the
k-th atom in the l-th unit cell is described with the
vector r(l, k).

The affine mapping induced by the introduction of
the defect on the perfect lattice is described by the
displacement u : Ω0 → Ωd, and given by:

u(l, k) = r(l, k)−R(l, k) (1)

Fig.1 shows the affine mapping associated with a
dipole of straight edge dislocations.

B. Definition of the Kanzaki force field of a
defect

The Kanzaki force field of a defect is the (fictitious)
set of forces that would have to be applied on a per-
fect, defect-free lattice (i.e., Ω0) to generate the same
elastic field as the one attained in the defective lattice
(i.e., Ωd).

If the total potential energy of the Ωd lattice is34

V =
∑

l,k

Φ(r(l, k)) (2)

where Φ(x) is the contribution of atom (l, k) to the
potential energy. The total force acting on atom (l, k)
is given by

Fi(l, k) = − ∂V

∂ri(l, k)
(3)

Expanding V about the defect-free Ω0 positions leads
to

Fi(l, k) = −1

2

∑

l′,k′

∂2Φ

∂ri(l, k)∂rj(l′, k′)

∣∣∣∣
0

uj(l
′, k′)+h.o.t.

(4)
where the subindex 0 denotes the derivative is evalu-
ated at the perfect lattice positions R(l, k), uj(l

′, k′) ≡
u(l′, k′) is the displacement to which atom (l′, k′) is
subjected in the affine mapping between Ω0 and Ωd.
The need for the affine mapping is clear: otherwise,
the expansion of the defective lattice’s potential en-
ergy about the perfect lattice positions is ill-defined.

If the displacement of the atoms off their perfect
lattice Ω0 positions is small, one may invoke the har-
monic approximation and neglect all higher order con-
tributions to eqn.434,35. In that case,

Fi(l, k) = −
∑

l′,k′

Φij(l − l′, k − k′)uj(l′, k′) (5)

where

Φij(l, l
′; k, k′) ≡ 1

2

∂2Φ

∂ri(l, k)∂rj(l′, k′)

∣∣∣∣
0

(6)

is the force constant matrix34,35 of the perfect Ω0 lat-
tice. Since Ω0 is a perfect lattice, it is bound by trans-
lational symmetry, Φij(l, l

′; k, k′) = Φij(l−l′, k−k′)34,
amongst some other properties (q.v.34,35).
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FIG. 1: Schematic of the affine mapping required to model an edge dislocation: in mapping Ωd onto Ω0, the
number of atoms must be conserved, thereby requiring the modelling of a dipole of edge dislocations.

The Kanzaki force field fK associated with the u :
Ω0 → Ωd affine mapping is then defined as

fKi (l, k) = −
∑

l′,k′

Φij(l − l′, k − k′)uj(l
′, k′) (7)

The Kanzaki force field given by eqn.7 can be used
as a source term on a perfect harmonic lattice, as they
generate the same displacement field as that observed
in Ωd. However, the converse is not necessarily true:
the Kanzaki field need not be applied with reverse
sign on the atoms of the defective lattice Ωd to re-
store the perfect lattice Ω0. This is because the force
constant matrix of the defective lattice is not the same
as that of the perfect lattice, nor has the same sym-
metries. Further comments on this may be found in
the Supplemental Material, that collect a number of
accessory remarks about the validity of the Kanzaki
force field method. In particular, the Supplemental
Material shows that the Kanzaki force field can be
employed in a linear elastic continuum because in the
long wave limit it converges to the Burridge-Knopoff
force representation of the corresponding defect. The
Supplemental Material also shows that the potential
energy associated with the Kanzaki force field of a de-
fect is the harmonic lattice’s potential energy, so that
the energy error associated with the Kanzaki force
field is the anharmonic correction energy term (cf.34).

III. COMPUTATION OF THE KANZAKI
FORCE FIELD

This section details how to compute the Kanzaki
force field of a defect as was defined in section II.
Eqn.7 defines the Kanzaki force field of a defect as
the product of the affine mapping u(x) : Ω0 → Ωd

with the perfect lattice’s force constant matrix. Thus,
computing the Kanzaki force field of a defect entails
two distinct steps: (1) compute the actual affine map-
ping; (2) perform the product defined in eqn.7, which
requires calculating the perfect lattice’s force constant
matrix.

In the following, focus is placed on studying edge
dislocations in a number of cubic metals using phe-
nomenological interatomic force fields. Edge disloca-
tions are eminently useful in the description of plastic

flow in metals27,32, and enable an almost immediate
comparison between the Kanzaki force field descrip-
tion of the defect and more traditional descriptions
such as the Volterra dislocation. In fcc metals, they
also offer the possibility of studying stacking faults at
the same time, since the dislocation core dissociates
into Shockley partials27. Furthermore, no clear lattice
statics force model of an edge dislocation is available
in the literature — this work serves to fill that gap.

Two observations must be made: First, both the
affine mapping and the force constant matrix com-
putation are achievable using a vast number of atom-
istic techniques, ranging from inherently quantum me-
chanical calculations such as Density Functional The-
ory (DFT)36 to classical calculations based on phe-
nomenological interatomic force fields37.

Second, the definition of the Kanzaki force field is
entirely general, and may be applied to the study of
any defect for which an affine mapping may be found.
The main limitation of the approach lies in its re-
liance on the harmonic approximation. Although the
defect’s relaxed structure and affine mappings may be
obtained by capturing higher order effects, particu-
larly if it is computed with DFT or anharmonic inter-
atomic potentials, the ensuing Kanzaki force field is
inherently harmonic, and it will not capture third or
higher anharmonicities, which would be of interest for
instance in capturing thermal effects or phase transi-
tions associated with the defect (see34,38). Still, for
any defect that may be wished to be modelled using
continuum elasticity, be it first or second order39,40,
local or non-local41,42, the Kanzaki force field of the
defect given by eqn.7 offers an exact account of the
associated elastic fields. This appears to hold true
for the study of a vast number of extended defects,
including crystallographic dislocations27,43, cracks44,
stacking faults27, or twin boundaries and low angle
grain boundaries45, amongst other extended defects.

1. Computation of the affine map of a straight edge
dislocation

Affine maps of dislocations are commonly computed
in the context of the core structure of screw disloca-
tions, particularly of bcc metals52–55, where the asso-
ciated concept of differential displacement map is em-
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FIG. 2: A�ne maps of di↵erent edge dislocations, centred about the dislocation core. The topological location
of the dislocation line (or of the dislocation partials) was determined using the DXA algorithm50 in Ovito51,
and is indicated here with a grey square. The displacement vectors are applied on the perfect lattice position,
and indicate the final location of the corresponding atom. The original box size was 200 ⇥ 100 ⇥ 10 unit cells

for both Al and Cu, and 160 ⇥ 100 ⇥ 12 unit cells for Ta and W.

ployed in determining properties associated with dis-
location motion and plastic slip, such as the Peierls
barrier27,52. The computation of the a�ne map in-
duced by an edge dislocation is less common, and here
arises as the first step towards computing the full Kan-
zaki force field of an edge dislocation.

All calculations reported here begin with a perfect
lattice, which is minimised in LAMMPS56 under an
appropriate interatomic force field to obtain ⌦0. The
system consists of a su�ciently large simulation box
subjected to periodic boundary conditions in all three
directions. Once the perfect lattice is minimised, a
dipole of edge dislocations is injected into the systems,
centred about the middle of the simulation box. The
dipole is necessary to ensure that mass is conserved
upon injecting the edge dislocation and that, there-
fore, the a�ne map on the lattice can be defined. The
dipole is injected by slipping a ±B/2 all atoms above
(below) the nominal slip surface in the appropriate
direction of slip; the slipped surface occupies half the
nominal x distance of the simulation box, which is
therefore made to be su�ciently large to ensure that

the two dislocations in the dipole do not mutually an-
nihilate. Then the system is minimised in LAMMPS,
resulting in a minimised dipole of edge dislocations
that defines the ⌦d defective lattice. The a�ne map-
ping is then computed performing a nearest neighbour
search atom by atom between the original ⌦0 and de-
fective ⌦d lattices. In this work, this was achieved by
constructing a well-balanced k-d tree57 containing ⌦0

and ⌦d, which was implemented using the nanoflann
library58.

In the following, the Kanzaki force fields of four cu-
bic metals will be computed: fcc Cu and fcc Al, as
exponents of two fcc metals of very dissimilar stack-
ing fault energies; and bcc W and bcc Ta, with dif-
ferent crystallographic directions for the slip surface.
Four well-known embedded atom potentials59 were
used: for Cu,60; for fcc Al,46; for bcc Ta,47; for bcc
W,49. The box sizes were 200 ⇥ 100 ⇥ 10 unit cells
with crystallography [1 1 0] ⇥ [1̄ 1 1] ⇥ [1 1̄ 2] for both
fcc metals, and 160 ⇥ 100 ⇥ 12 for both bcc metals,
with crystallography [1 1 1̄]⇥ [1̄ 1 2]⇥ [1̄ 1 0] for Ta and
[1 1 1] ⇥ [1 0 1̄] ⇥ [1 2̄ 1] for W.
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(c) fcc Cu, using48.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

y
=

[1
0

1̄
]
(Å
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location motion and plastic slip, such as the Peierls
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duced by an edge dislocation is less common, and here
arises as the first step towards computing the full Kan-
zaki force field of an edge dislocation.

All calculations reported here begin with a perfect
lattice, which is minimised in LAMMPS56 under an
appropriate interatomic force field to obtain ⌦0. The
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subjected to periodic boundary conditions in all three
directions. Once the perfect lattice is minimised, a
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(Å

)

x=[1 1 0] (Å)
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(d) bcc W, using49.

FIG. 2: A�ne maps of di↵erent edge dislocations, centred about the dislocation core. The topological location
of the dislocation line (or of the dislocation partials) was determined using the DXA algorithm50 in Ovito51,
and is indicated here with a grey square. The displacement vectors are applied on the perfect lattice position,
and indicate the final location of the corresponding atom. The original box size was 200 ⇥ 100 ⇥ 10 unit cells

for both Al and Cu, and 160 ⇥ 100 ⇥ 12 unit cells for Ta and W.

ployed in determining properties associated with dis-
location motion and plastic slip, such as the Peierls
barrier27,52. The computation of the a�ne map in-
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All calculations reported here begin with a perfect
lattice, which is minimised in LAMMPS56 under an
appropriate interatomic force field to obtain ⌦0. The
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subjected to periodic boundary conditions in all three
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centred about the middle of the simulation box. The
dipole is necessary to ensure that mass is conserved
upon injecting the edge dislocation and that, there-
fore, the a�ne map on the lattice can be defined. The
dipole is injected by slipping a ±B/2 all atoms above
(below) the nominal slip surface in the appropriate
direction of slip; the slipped surface occupies half the
nominal x distance of the simulation box, which is
therefore made to be su�ciently large to ensure that

the two dislocations in the dipole do not mutually an-
nihilate. Then the system is minimised in LAMMPS,
resulting in a minimised dipole of edge dislocations
that defines the ⌦d defective lattice. The a�ne map-
ping is then computed performing a nearest neighbour
search atom by atom between the original ⌦0 and de-
fective ⌦d lattices. In this work, this was achieved by
constructing a well-balanced k-d tree57 containing ⌦0

and ⌦d, which was implemented using the nanoflann
library58.

In the following, the Kanzaki force fields of four cu-
bic metals will be computed: fcc Cu and fcc Al, as
exponents of two fcc metals of very dissimilar stack-
ing fault energies; and bcc W and bcc Ta, with dif-
ferent crystallographic directions for the slip surface.
Four well-known embedded atom potentials59 were
used: for Cu,60; for fcc Al,46; for bcc Ta,47; for bcc
W,49. The box sizes were 200 ⇥ 100 ⇥ 10 unit cells
with crystallography [1 1 0] ⇥ [1̄ 1 1] ⇥ [1 1̄ 2] for both
fcc metals, and 160 ⇥ 100 ⇥ 12 for both bcc metals,
with crystallography [1 1 1̄]⇥ [1̄ 1 2]⇥ [1̄ 1 0] for Ta and
[1 1 1] ⇥ [1 0 1̄] ⇥ [1 2̄ 1] for W.

(d) bcc W, using49.

FIG. 2: Affine maps of different edge dislocations, centred about the dislocation core. The topological location
of the dislocation line (or of the dislocation partials) was determined using the DXA algorithm50 in Ovito51,

and is indicated here with a grey square. The displacement vectors are applied on the perfect lattice position,
and indicate the final location of the corresponding atom. The original box size was 200× 100× 10 unit cells

for both Al and Cu, and 160× 100× 12 unit cells for Ta and W.

ployed in determining properties associated with dis-
location motion and plastic slip, such as the Peierls
barrier27,52. The computation of the affine map in-
duced by an edge dislocation is less common, and here
arises as the first step towards computing the full Kan-
zaki force field of an edge dislocation.

All calculations reported here begin with a perfect
lattice, which is minimised in LAMMPS56 under an
appropriate interatomic force field to obtain Ω0. The
system consists of a sufficiently large simulation box
subjected to periodic boundary conditions in all three
directions. Once the perfect lattice is minimised, a
dipole of edge dislocations is injected into the systems,
centred about the middle of the simulation box. The
dipole is necessary to ensure that mass is conserved
upon injecting the edge dislocation and that, there-
fore, the affine map on the lattice can be defined. The
dipole is injected by slipping a ±B/2 all atoms above
(below) the nominal slip surface in the appropriate
direction of slip; the slipped surface occupies half the
nominal x distance of the simulation box, which is
therefore made to be sufficiently large to ensure that
the two dislocations in the dipole do not mutually an-

nihilate. Then the system is minimised in LAMMPS,
resulting in a minimised dipole of edge dislocations
that defines the Ωd defective lattice. The affine map-
ping is then computed performing a nearest neighbour
search atom by atom between the original Ω0 and de-
fective Ωd lattices. In this work, this was achieved by
constructing a well-balanced k-d tree57 containing Ω0

and Ωd, which was implemented using the nanoflann
library58.

In the following, the Kanzaki force fields of four cu-
bic metals will be computed: fcc Cu and fcc Al, as
exponents of two fcc metals of very dissimilar stack-
ing fault energies; and bcc W and bcc Ta, with dif-
ferent crystallographic directions for the slip surface.
Four well-known embedded atom potentials59 were
used: for Cu,60; for fcc Al,46; for bcc Ta,47; for bcc
W,49. The box sizes were 200 × 100 × 10 unit cells
with crystallography [1 1 0] × [1̄ 1 1] × [1 1̄ 2] for both
fcc metals, and 160 × 100 × 12 for both bcc metals,
with crystallography [1 1 1̄]× [1̄ 1 2]× [1̄ 1 0] for Ta and
[1 1 1]× [1 0 1̄]× [1 2̄ 1] for W.

Figure 2 collects the affine maps resulting from the
different lattice minimisations we report in this article,
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centred about the core of the leftmost of the two dis-
locations, the geometric centre of which is indicated
in the figure. It depicts the true magnitude u(l, k)
displacement applied on the Ω0 perfect lattice atomic
positions. As may be seen, the magnitude of the affine
mapping is not quantised about the dislocation core,
but away from it, it quickly approaches the crystallo-
graphic magnitudes of either 0 (to the left of the core)
or ±B (to the right of the core, where the slip plane
lies).

2. Computation of the Kanzaki force field

Once the affine mapping has been obtained, the
Kanzaki force field may be computed using eqn.7.
This requires computing the force constant matrix.
In the computations reported here, this is done from
an embedded atom interatomic force field.

For the embedded atom potentials, the force con-
stant matrix has a well-known form (see61), so its
computation will not be reproduced here. The prod-
uct between the force constant matrix and the affine
mapping was performed using an in-house code that

relies on the Eigen linear algebra library62.

IV. SLIP AND CORE KANZAKI FIELDS OF
AN EDGE DISLOCATION

The result of applying eqn.7 to the affine mapping
u(l, k) of an energy minimised structure such as the
ones shown in fig.2 will hereafter be called the full
Kanzaki force field, to emphasise the fact that it cap-
tures both the relaxed topology of the core and the
crystallographical disregistry that characterises the
dislocation away from the core.

The full Kanzaki force field can be divided by lin-
ear superposition into the slip and core Kanzaki force
fields21. The slip Kanzaki force field is the field neces-
sary to produce the topology of a Volterra dislocation
in the dislocated lattice, without further provisions
for the relaxation of the lattice about the dislocation
core. The affine mapping in that case can be directly
given mathematically as21:

uslipi (l, k) = χs(l − l′, k′k′)Bi (8)

where Bi ≡ B is the dislocation’s Burgers vector, and
χs is a choice function of the form21,26

χS(l − l′, k − k′) =





+1 if (l,k) is above the slip surface and (l’,k’) below

−1 if (l,k) is below the slip surface and (l’,k’) above

0 otherwise

(9)

The corresponding slip Kanzaki forces are therefore:

f slipi (l, k) = −
∑

l′,k′

Φij(l − l′, k − k′)Bjχs(l − l′, k′k′)

(10)
and can be computed analytically, without recourse to
an energy minimisation of the sort described in section
III 1.

Given that the Kanzaki force field is defined in a
harmonic lattice, the slip Kanzaki force field can al-
ways be regarded as a constituent part of the full Kan-
zaki force field. The difference between the full Kan-
zaki force field and the slip Kanzaki force field is the
core Kanzaki force field, which accounts for core effects
missed in the definiition of the Volterra dislocation.

Core effects encompass all those effects missed in
the Volterra model of a dislocation, but that can be
modelled in the atomistic system. In particular, the
topology of the core will deviate from the infinitely
thin core of a Volterra dislocation; the actual core
will have a finite width and the atomic arrangement
about it will be distorted relative to the perfect lattice
position27. The core Kanzaki force field is hereafter
defined as:

f corei (l, k) = fKi (l, k)− f slipi (l, k) (11)

that is, the difference between the actual relaxed affine
mapping and the displacement field necessary to inject

a Volterra dislocation in the lattice instead. As said,
because in the far field the relaxed lattice Ωd is defined
by a Volterra displacement field (so that away from
the core u(l, k) ≈ uslip(l, k))), here ucore acts as a
measure of the relative displacement of the atoms at
the dislocation core.

We adopt the following convention: the Volterra
displacement (and the slip Kanzaki forces) is applied
on the geometrical centre of the corresponding stack-
ing fault. In all other cases, the Volterra displacement
field is applied on the atoms placed immediately above
and below the geometrical location of the dislocation
line.

A. Computational results for the Kanzaki force
field of edge dislocations in Al, Cu, Ta, and W

Using the procedure outlined in section III 2, the
Kanzaki force field for an edge dislocation in fcc Al
and Cu, and in bcc Ta and W were computed and
collected in fig.3, which depicts the total Kanzaki force
(i.e., including both slip and core components), along
the crystallographic directions defined in fig.2 for the
corresponding affine maps of the same materials. Two
effects are observed, which merit separate treatment
in the following.
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FIG. 3: Kanzaki core fields corresponding to the a�ne maps in fig.2. The scale for the forces is 1Å⌘ 1eV/Å.

1. Slip force field

Away from the core, the Kanzaki force field is com-
posed of force doublets acting across the slip plane
in the atomic planes immediately above and below it.
These forces appear in all four materials (with a par-
ticular proviso for 1/2{1 1 2}h1 1 1i edge dislocations
in bcc metals, which is discussed in more detail be-
low), and arise because of the relative ±B slip dis-
placement that, away from the core, characterises the
dislocation as a Volterra disregistry.

This is confirmed in figure 4, which shows the
Volterra contribution to the Kanzaki force field for
each of the metals considered. The Volterra contribu-
tion is computed using eqn.10 (i.e., by injecting a pure
Volterra dislocation into the lattice); this entails im-
posing a relative displacement ux = ±B/2 for all the
atoms immediately above and below the nominal slip
surface. No provision is made for the core, which as
in the Volterra dislocation is assumed to be infinitely
thin. The resulting slip Kanzaki force field consists
largely of two components: a set of force doublets act-

ing across the slip plane, and a net resultant vertical
force acting at the nominal core. As is discussed in
section V A, these two sets of forces have well-defined
magnitudes.

2. Core Kanzaki force field

The core Kanzaki fields of these systems are repro-
duced in fig.5. As may be seen, they are generally
localised about the topological position of the dislo-
cation line.

In particular, for the fcc metals, the core field is
distributed along the stacking fault lying at the dislo-
cation core. This means that the core field is highly
localised for high stacking fault energy metals, as is
the case of fcc Al (fig.5a), but widely extended for low
stacking fault energy metals such as fcc Cu, where
it is extended over ⇡ 50Å. The magnitude of the core
forces is also weaker than the slip forces: excluding the
fy central force component, which is due to the slip
field, they are about one order of magnitude weaker
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(c) fcc Cu, using60.

200

210

220

230

240

250

100 110 120 130 140 150

y
=

[1
0

1̄
]
(Å
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1. Slip force field

Away from the core, the Kanzaki force field is com-
posed of force doublets acting across the slip plane
in the atomic planes immediately above and below it.
These forces appear in all four materials (with a par-
ticular proviso for 1/2{1 1 2}h1 1 1i edge dislocations
in bcc metals, which is discussed in more detail be-
low), and arise because of the relative ±B slip dis-
placement that, away from the core, characterises the
dislocation as a Volterra disregistry.

This is confirmed in figure 4, which shows the
Volterra contribution to the Kanzaki force field for
each of the metals considered. The Volterra contribu-
tion is computed using eqn.10 (i.e., by injecting a pure
Volterra dislocation into the lattice); this entails im-
posing a relative displacement ux = ±B/2 for all the
atoms immediately above and below the nominal slip
surface. No provision is made for the core, which as
in the Volterra dislocation is assumed to be infinitely
thin. The resulting slip Kanzaki force field consists
largely of two components: a set of force doublets act-

ing across the slip plane, and a net resultant vertical
force acting at the nominal core. As is discussed in
section V A, these two sets of forces have well-defined
magnitudes.

2. Core Kanzaki force field

The core Kanzaki fields of these systems are repro-
duced in fig.5. As may be seen, they are generally
localised about the topological position of the dislo-
cation line.

In particular, for the fcc metals, the core field is
distributed along the stacking fault lying at the dislo-
cation core. This means that the core field is highly
localised for high stacking fault energy metals, as is
the case of fcc Al (fig.5a), but widely extended for low
stacking fault energy metals such as fcc Cu, where
it is extended over ⇡ 50Å. The magnitude of the core
forces is also weaker than the slip forces: excluding the
fy central force component, which is due to the slip
field, they are about one order of magnitude weaker
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1. Slip force field

Away from the core, the Kanzaki force field is com-
posed of force doublets acting across the slip plane
in the atomic planes immediately above and below it.
These forces appear in all four materials (with a par-
ticular proviso for 1/2{1 1 2}h1 1 1i edge dislocations
in bcc metals, which is discussed in more detail be-
low), and arise because of the relative ±B slip dis-
placement that, away from the core, characterises the
dislocation as a Volterra disregistry.

This is confirmed in figure 4, which shows the
Volterra contribution to the Kanzaki force field for
each of the metals considered. The Volterra contribu-
tion is computed using eqn.10 (i.e., by injecting a pure
Volterra dislocation into the lattice); this entails im-
posing a relative displacement ux = ±B/2 for all the
atoms immediately above and below the nominal slip
surface. No provision is made for the core, which as
in the Volterra dislocation is assumed to be infinitely
thin. The resulting slip Kanzaki force field consists
largely of two components: a set of force doublets act-

ing across the slip plane, and a net resultant vertical
force acting at the nominal core. As is discussed in
section V A, these two sets of forces have well-defined
magnitudes.

2. Core Kanzaki force field

The core Kanzaki fields of these systems are repro-
duced in fig.5. As may be seen, they are generally
localised about the topological position of the dislo-
cation line.

In particular, for the fcc metals, the core field is
distributed along the stacking fault lying at the dislo-
cation core. This means that the core field is highly
localised for high stacking fault energy metals, as is
the case of fcc Al (fig.5a), but widely extended for low
stacking fault energy metals such as fcc Cu, where
it is extended over ⇡ 50Å. The magnitude of the core
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1. Slip force field

Away from the core, the Kanzaki force field is com-
posed of force doublets acting across the slip plane
in the atomic planes immediately above and below it.
These forces appear in all four materials (with a par-
ticular proviso for 1/2{1 1 2}h1 1 1i edge dislocations
in bcc metals, which is discussed in more detail be-
low), and arise because of the relative ±B slip dis-
placement that, away from the core, characterises the
dislocation as a Volterra disregistry.

This is confirmed in figure 4, which shows the
Volterra contribution to the Kanzaki force field for
each of the metals considered. The Volterra contribu-
tion is computed using eqn.10 (i.e., by injecting a pure
Volterra dislocation into the lattice); this entails im-
posing a relative displacement ux = ±B/2 for all the
atoms immediately above and below the nominal slip
surface. No provision is made for the core, which as
in the Volterra dislocation is assumed to be infinitely
thin. The resulting slip Kanzaki force field consists
largely of two components: a set of force doublets act-

ing across the slip plane, and a net resultant vertical
force acting at the nominal core. As is discussed in
section V A, these two sets of forces have well-defined
magnitudes.

2. Core Kanzaki force field

The core Kanzaki fields of these systems are repro-
duced in fig.5. As may be seen, they are generally
localised about the topological position of the dislo-
cation line.

In particular, for the fcc metals, the core field is
distributed along the stacking fault lying at the dislo-
cation core. This means that the core field is highly
localised for high stacking fault energy metals, as is
the case of fcc Al (fig.5a), but widely extended for low
stacking fault energy metals such as fcc Cu, where
it is extended over ⇡ 50Å. The magnitude of the core
forces is also weaker than the slip forces: excluding the
fy central force component, which is due to the slip
field, they are about one order of magnitude weaker

(d) bcc W, using49.

FIG. 3: Kanzaki core fields corresponding to the affine maps in fig.2. The scale for the forces is 1Å≡ 1eV/Å.

1. Slip force field

Away from the core, the Kanzaki force field is com-
posed of force doublets acting across the slip plane
in the atomic planes immediately above and below it.
These forces appear in all four materials (with a par-
ticular proviso for 1/2{1 1 2}〈1 1 1〉 edge dislocations
in bcc metals, which is discussed in more detail be-
low), and arise because of the relative ±B slip dis-
placement that, away from the core, characterises the
dislocation as a Volterra disregistry.

This is confirmed in figure 4, which shows the
Volterra contribution to the Kanzaki force field for
each of the metals considered. The Volterra contribu-
tion is computed using eqn.10 (i.e., by injecting a pure
Volterra dislocation into the lattice); this entails im-
posing a relative displacement ux = ±B/2 for all the
atoms immediately above and below the nominal slip
surface. No provision is made for the core, which as
in the Volterra dislocation is assumed to be infinitely
thin. The resulting slip Kanzaki force field consists
largely of two components: a set of force doublets act-
ing across the slip plane, and a net resultant vertical

force acting at the nominal core. As is discussed in
section V A, these two sets of forces have well-defined
magnitudes.

2. Core Kanzaki force field

The core Kanzaki fields of these systems are repro-
duced in fig.5. As may be seen, they are generally
localised about the topological position of the dislo-
cation line.

In particular, for the fcc metals, the core field is
distributed along the stacking fault lying at the dislo-
cation core. This means that the core field is highly
localised for high stacking fault energy metals, as is
the case of fcc Al (fig.5a), but widely extended for low
stacking fault energy metals such as fcc Cu, where
it is extended over ≈ 50Å. The magnitude of the core
forces is also weaker than the slip forces: excluding the
fy central force component, which is due to the slip
field, they are about one order of magnitude weaker
(i.e., ≈ 0.1eV/Å).

For bcc metals, the core is generally more localised
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FIG. 4: Volterra Kanzaki forces for the reference materials. Scale 1Å⌘ 1eV/Å.

(i.e., ⇡ 0.1eV/Å).
For bcc metals, the core is generally more localised

than for fcc metals. This is readily observable in the
case of Ta (fig.5b). For bcc W in fig.5d, the core
appears more extended; however considering the large
magnitude of the slip Kanzaki forces in W (in excess
of 7.5eV/Å), the W core forces shown in fig.5d are
about two orders of magnitude smaller (⇡ 0.1eV/Å).

Except for bcc Ta, the slip Kanzaki forces away
from the core act only in the x-direction. Tantalum,
however, shows the presence of an additional set of
fy doublets acting across the h1 1 2i slip surface. This
is an unexpected feature of edge dislocations in some
specific crystallographic alignments of bcc lattices. As
is discussed in section V, the continuum level expecta-
tion for the slip forces is that they be formed by force
doublets acting across the slip plane in the x-direction.
In the case of bcc Ta however, an additional set of fy

doublets in the y-direction appears.
These fy doublets originate due to the non-diagonal

terms of the force constant matrix for the h1 1 2i crys-
tallographic orientation63 in bcc metals and are, there-
fore, heavily dependent on the exact nature of the in-
teratomic force field (see64). Similar behaviour (not
presented here) was also observed in bcc Fe or bcc W
for the same 1/2h1 1 1i{1 1 2} edge dislocations. No-

tice however that the 1/2{1 1 1}h1 1 0i edge dislocation
in bcc W does not display these fy doublets — this is
also the case for bcc Ta or bcc Fe in the same orien-
tations.

The e↵ect of the fy doublets is to promote the cur-
vature of the slip plane, previously reported for bcc
metals65. The curvature can be observed in fig.6,
which shows the uy(l, k) displacement field component
experienced by the atoms immediately above the slip
surface about the nominal position of the core. As can
be see, the atoms experience a logarithmic decay away
from the core, which is characteristic of the Volterra
dislocation27. However, unlike in the classical Volterra
solution, the decay at either side of the core is asym-
metric. This is related to the curvature on the {112}
plane, and can be understood in terms of the fy dou-
blets in the linear elastic continuum. The curvature
does not translate in a change in the Peach-Koehler
force, so it is not expected to a↵ect the dislocation
motion.

Thus, consider a dipole of edge dislocations sepa-
rated a distance L similar to the one that has been
simulated here. In the linear elastic continuum, the
dipoles may be subsumed to a distribution of force
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(i.e., ⇡ 0.1eV/Å).
For bcc metals, the core is generally more localised

than for fcc metals. This is readily observable in the
case of Ta (fig.5b). For bcc W in fig.5d, the core
appears more extended; however considering the large
magnitude of the slip Kanzaki forces in W (in excess
of 7.5eV/Å), the W core forces shown in fig.5d are
about two orders of magnitude smaller (⇡ 0.1eV/Å).

Except for bcc Ta, the slip Kanzaki forces away
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tion for the slip forces is that they be formed by force
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terms of the force constant matrix for the h1 1 2i crys-
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experienced by the atoms immediately above the slip
surface about the nominal position of the core. As can
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than for fcc metals. This is readily observable in the
case of Ta (fig.5b). For bcc W in fig.5d, the core
appears more extended; however considering the large
magnitude of the slip Kanzaki forces in W (in excess
of 7.5eV/Å), the W core forces shown in fig.5d are
about two orders of magnitude smaller (≈ 0.1eV/Å).

Except for bcc Ta, the slip Kanzaki forces away
from the core act only in the x-direction. Tantalum,
however, shows the presence of an additional set of
fy doublets acting across the 〈1 1 2〉 slip surface. This
is an unexpected feature of edge dislocations in some
specific crystallographic alignments of bcc lattices. As
is discussed in section V, the continuum level expecta-
tion for the slip forces is that they be formed by force
doublets acting across the slip plane in the x-direction.
In the case of bcc Ta however, an additional set of fy
doublets in the y-direction appears.

These fy doublets originate due to the non-diagonal
terms of the force constant matrix for the 〈1 1 2〉 crys-
tallographic orientation63 in bcc metals and are, there-
fore, heavily dependent on the exact nature of the in-
teratomic force field (see64). Similar behaviour (not
presented here) was also observed in bcc Fe or bcc W
for the same 1/2〈1 1 1〉{1 1 2} edge dislocations. No-
tice however that the 1/2{1 1 1}〈1 1 0〉 edge dislocation
in bcc W does not display these fy doublets — this is

also the case for bcc Ta or bcc Fe in the same orien-
tations.

The effect of the fy doublets is to promote the cur-
vature of the slip plane, previously reported for bcc
metals65. The curvature can be observed in fig.6,
which shows the uy(l, k) displacement field component
experienced by the atoms immediately above the slip
surface about the nominal position of the core. As can
be see, the atoms experience a logarithmic decay away
from the core, which is characteristic of the Volterra
dislocation27. However, unlike in the classical Volterra
solution, the decay at either side of the core is asym-
metric. This is related to the curvature on the {112}
plane, and can be understood in terms of the fy dou-
blets in the linear elastic continuum. The curvature
does not translate in a change in the Peach-Koehler
force, so it is not expected to affect the dislocation
motion.

Thus, consider a dipole of edge dislocations sepa-
rated a distance L similar to the one that has been
simulated here. In the linear elastic continuum, the
dipoles may be subsumed to a distribution of force
doublets of the form

fy(x, y) = f0δ
′(y) [H(x)−H(x− L)] , (12)

where x is the slip direction and y the slip plane nor-
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(c) fcc Cu, using60.

210

215

220

225

230

235

240

100 105 110 115 120 125 130 135 140 145 150

y
=

[1
0

1̄
]
(Å
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where x is the slip direction and y the slip plane nor-

mal, and where f0 is the doublet’s magnitude, which
in the case of Ta we report here is about 0.1457µB.
The elastic field associated with these doublets can be
found via the representation theorem66
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(Å

)

x=[1 1 1] (Å)
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(Å

)

x=[1 1 1̄] (Å)
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mal, and where f0 is the doublet’s magnitude, which
in the case of Ta we report here is about 0.1457µB.
The elastic field associated with these doublets can be

found via the representation theorem66

ufyx (x, y) =

∫

R×R
f0Gxy(x− x′, y − y′)fy(x′, y′)dx′dy′

= −
∫ L

0

f0Gxy,y(x− x′, y)dx′

ufyy (x, y) =

∫

R×R
f0Gyy(x− x′, y − y′)fy(x′, y′)dx′dy′

= −
∫ L

0

f0Gyy,y(x− x′, y)dx′ (13)

whereGij(x, y) is the planar elastic Green’s function67

Gxy(x, y) =
xy
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Gyy(x, y) =
1

8πµ(1− ν)

[
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− (3− 4ν) log

(
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)]
,

r =
√
x2 + y2 (14)

The convolution results in

ufyx (x, y) =
f0

8πµ(ν − 1)

[
y2
(

1

(L− x)2 + y2
− 1

x2 + y2

)
+

+ log

(
(L− x)2 + y2

x2 + y2

)]
(15)
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ufyy (x, y) =
f0

8πµ(ν − 1)

[
y

(
L− x

(L− x)2 + y2
+

x

x2 + y2

)
−

−2(2ν − 1)

(
tan−1

(
L− x
y

)
+ tan−1

(
x

y

))]
(16)

These two displacement field components are super-
posed to the Volterra dislocation’s, which as was dis-
cussed in21 are generated by the fx force doublets and
a net resultant fy acting at the core. Their effect is
one of curving the slip plane and the dislocation.

Fig.6 shows the uy displacement field component for
the atoms immediately above the slip plane, at either
side of the core, the position of which is marked with
a vertical line. The figure displays the displacement
field predicted by the Volterra dislocation, and that
predicted by the model corrected with eqn.16 to in-
clude the fy doublets’ contribution. As can be seen,
the Volterra field is symmetric about the core, whereas
the atomistic calculation’s is not; upon adding the cor-
rection due to the fy doublets, the asymmetry is ob-
tained. This asymmetry and the ensuing curvature
can also be appreciated in fig.4 in the Supplemen-
tal Material, which compares the atomistic and lin-
ear elastic planar stress field components for this very
same dislocation.

The presence of the force doublets suggests that,
unlike in the pure Volterra description, the orienta-
tion of the slip plane, can affect the elastic fields of
the dislocation, and that there are specific crystal-
lographic orientations where the dislocation is con-
siderably non-Volterra even away from the core. For
instance, here we have seen that an edge dislocation
slipping on the {1 1 2} planes in a bcc metal have an
additional extended fy component that is not present
if the dislocation is slips on {1 1 0} planes (as is shown
here for bcc W). This effect is relatively small be-
cause the fy doublet magnitudes are about one order
of magnitude smaller than the fx doublets that gen-
erate the Volterra dislocation; however, unlike other
core effects, it is not localised about the core, so the
long range effects will be larger than any deviation of
the stress fields due to the core structure.

3. Antiplanar Kanzaki force components

The core Kanzaki force field of edge dislocations
may also contains antiplanar force components act-
ing on the z direction. By antiplanar we mean that
the core forces act in the antiplanar (z) direction,
meaning that the core itself needs to be represented
in three dimensions. These fz components are en-
tirely missed in the Volterra dislocation and other de-
scriptions of the dislocation core such as the Peierls-
Nabarro model (see27). In the Kanzaki force field,
such three-dimensional effects are captured by default.

For fcc metals, the antiplanar forces are associated
with the intrinsic stacking fault that conforms the dis-
sociated core. For bcc metals where there is no stack-
ing, they may or may not be present depending on the
crystallographic orientation of the third dimension.

Fig.7 collects the antiplanar force components as
part of the full Kanzaki force field. This is done so

as to illustrate a number of three dimensional effects
arising due to the complex nature of the dislocation.
First, as may be seen in figs.7a and 7b, in fcc metals
the slip Kanzaki forces (i.e., the force components act-
ing in the x direction) act only on four of the six planes
that conform the ABCDEFABCDEF . . . stacking
sequence (cf.27). Two of the said six planes lack Kan-
zaki forces, in spite of the fact that the atoms on the
plane do experience a relative displacement. This is
due to the predicted interactions between atoms be-
longing to different planes in the stacking sequence:
the Kanzaki force field in eqn.7 is not the result of a
simple matrix product, but relies on the long range
interactions of each atom with the rest. This does not
arise in the bcc metals, where no stacking exists, and
as result slip forces act with alternating sign on each
atomic plane (see figs.7c and 7d).

The antiplanar force component itself acts due to
the presence of the intrinsic stacking fault acting at
the core, which alters the stacking sequence there. In-
deed, the fz forces act periodically in alternating rows
that match the stacking fault proper, and point in the
direction of the next atomic plane in the stacking se-
quence. In both the Cu and Al cases, they have a very
similar form of equal and opposite forces acting along
the line that joins the atoms in the (intrinsic) stacking
fault; due to the sequence in the stacking of the three
distinct atomic planes, one in each third atomic plane
experiences no antiplanar Kanzaki force (see figs.7a
and 7b).

For bcc metals, the antiplanar forces do not exist
for the case of the 〈1 1 1〉{1 1 2} edge dislocation in
Ta. However, for the 〈1 1 1〉{1 1 0} edge dislocation in
W, the antiplanar forces are not negligible. In this
case, the antiplanar force components arise due to
the non-diagonal nature of the force constant matrix
along the 〈1 1 2〉 directions, which was responsible for
the fy force doublets in the case of the 〈1 1 1〉{1 1 2}
edge dislocation in Ta. Again, the presence of an-
tiplanar forces in bcc metals suggests that there exists
a long range deviation between the Volterra disloca-
tion’s fields and the actual fields of dislocations in bcc
metals, brought about by the slip plane under consid-
eration: edge dislocations with slip on {1 1 2} planes
will not have antiplanar core components; edge dislo-
cations with slip on {1 1 0} planes will.

Nevertheless, the antiplanar core components
highlight that despite being a relatively common
assumption27,61, the core of edge dislocations is in-
herently non-planar for a wide range of metals and
orientations. Our current calculations show that the
core of all edge dislocations in fcc metals is bound
to be non-planar due to the presence of the intrin-
sic stacking fault, which carries additional antiplanar
force components. In bcc metals, the non-planarity is
dependent on the specific crystallographic orientation
of the slip surface and the Burgers vector: here we
have found that 〈1 1 1〉{1 1 0} edge dislocations in bcc
metals will have a non-planar core, whereas the core of
〈1 1 1〉{1 1 2} edge dislocations in bcc metals will likely
be strictly planar. It is worth however pointing out
that non-planar effects will be relevant in short-range
interactions. Indeed, the magnitude of the antiplanar
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of the slip surface and the Burgers vector: here we
have found that h1 1 1i{1 1 0} edge dislocations in bcc
metals will have a non-planar core, whereas the core of
h1 1 1i{1 1 2} edge dislocations in bcc metals will likely
be strictly planar. It is worth however pointing out
that non-planar e↵ects will be relevant in short-range
interactions. Indeed, the magnitude of the antiplanar
Kanzaki force components is, for all metals considered
here, of the order of 0.1eV/Å, i.e., about an order of
magnitude weaker than the Volterra slip forces — even
for bcc W, the largest fz component is ⇡ 0.5eV/Å.
Thus, although the antiplanar forces add an addi-
tional set of localised and relatively weak antiplanar
elastic field components to the dislocation which are
not available in the Volterra or Peierls-Nabarro de-
scriptions of edge dislocations, their e↵ect will be ex-
tremely localised, and relatively weak comapred to the
in-plane stress field components.

V. ELASTIC MODELS OF THE EDGE
DISLOCATION BASED ON THE KANZAKI

FORCE FIELD

As with point defects11 and screw dislocations21,
the Kanzaki force field of edge dislocations can be
employed as a source term in the linear elastic contin-
uum. This allows the direct translation of the detailed
topology of the defect to the linear elastic continuum,
and a better modelling of its long and short range
e↵ects. This invarianble results in models of the dis-
location where the core’s width and general topology
(and energy) in the continuum match the atomistic
prediction.

A. Volterra edge dislocation and the slip
Kanzaki force field

As has been noted in section III 2, all the Kanzaki
force fields can be divided into core and slip force com-
ponents. The slip force field is characterised by a set
of force doublets acting across the slop surface, and a
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be strictly planar. It is worth however pointing out
that non-planar e↵ects will be relevant in short-range
interactions. Indeed, the magnitude of the antiplanar
Kanzaki force components is, for all metals considered
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be strictly planar. It is worth however pointing out
that non-planar e↵ects will be relevant in short-range
interactions. Indeed, the magnitude of the antiplanar
Kanzaki force components is, for all metals considered
here, of the order of 0.1eV/Å, i.e., about an order of
magnitude weaker than the Volterra slip forces — even
for bcc W, the largest fz component is ⇡ 0.5eV/Å.
Thus, although the antiplanar forces add an addi-
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elastic field components to the dislocation which are
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Kanzaki force components is, for all metals considered
here, of the order of 0.1eV/Å, i.e., about an order of
magnitude weaker than the Volterra slip forces — even
for bcc W, the largest fz component is ≈ 0.5eV/Å.
Thus, although the antiplanar forces add an addi-
tional set of localised and relatively weak antiplanar
elastic field components to the dislocation which are
not available in the Volterra or Peierls-Nabarro de-
scriptions of edge dislocations, their effect will be ex-
tremely localised, and relatively weak comapred to the
in-plane stress field components.

V. ELASTIC MODELS OF THE EDGE
DISLOCATION BASED ON THE KANZAKI

FORCE FIELD

As with point defects11 and screw dislocations21,
the Kanzaki force field of edge dislocations can be
employed as a source term in the linear elastic contin-
uum. This allows the direct translation of the detailed
topology of the defect to the linear elastic continuum,
and a better modelling of its long and short range
effects. This invarianble results in models of the dis-

location where the core’s width and general topology
(and energy) in the continuum match the atomistic
prediction.

A. Volterra edge dislocation and the slip
Kanzaki force field

As has been noted in section III 2, all the Kanzaki
force fields can be divided into core and slip force com-
ponents. The slip force field is characterised by a set
of force doublets acting across the slop surface, and a
net resultant force acting at the dislocation core in the
normal direction to the slip plane. These two forces
correspond with the Burridge-Knopoff force represen-
tation of an edge dislocation in the linear elastic con-
tinuum.

According to the Burridge-Knopoff theorem, any
displacement discontinuity [ui](x) compactly sup-
ported over some surface D might be represented as
a set of equivalent body forces, given by

fp(x) = −
∫

D′
Cijpqνj [ui](x−x′)∂qδ(x−x′)dD′ (17)
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where Cijpq is the elastic constants tensor, and D the
slip surface the normal vector of which is νj . For a
straight edge dislocation, u1(x) = BH(x1)δ(x2), for
B the Burgers vector, whereupon for a linear isotropic
material

f1(x, y) = −BµH(x1)δ′(x2), f2(x, y) = −Bµδ(x1)δ(x2)
(18)

This represents a distribution of force doublets in the
x1 ≡ x direction, and a force singleton acting at the
position of the dislocation line. As may be seen in
fig.4, the slip Kanzaki force field clearly displays these
two components: a vertical force acting at the core,
and a distribution of force doublets acting across the
slip surface.

The force doublets acting across the slip plane in
the crystalline lattice may be directly assimilated to
the Burridge-Knopoff force doublets, since in the lin-
ear elastic limit of the harmonic lattice the planes
immediately above and below the nominal slip sur-
face are subsumed into the notional continuum slip
surface21. The magnitude of the computed slip Kan-
zaki force doublets are also in good agreement with
the Burridge-Knopoff magnitude of BC12 (or Bµ) for
each material. The Supplemental Material collects the
numerical verification of this.

B. Elastic model of the dislocation: the core
Kanzaki field

In addition to the slip forces that on their own
generate the Volterra dislocation, the dislocation core
may also be modelled in the continuum using the core
Kanzaki force field as source terms. Thus, let f corei

be the set of Kanzaki core forces, represented in fig.5,
and defined as the difference between the full Kanzaki
field of the relaxed dislocation and the Kanzaki field
of the Volterra dislocation. They may be expressed as
a distribution of point forces

f corei (x) =
∑

n

fni δ(x− xn) (19)

where fni is the magnitude of each individual core
force component, applied on point xn.

As has been established above, the slip forces can
be described using the Burridge-Knopoff force repre-
sentation in the continuum, i.e., as a continuous dis-
tribution of slip,

f slipi (x) = −BjνlCikjl∂kH(x1)δ(x2) (20)

Given that the core field is defined as the difference
between the global Kanzaki force field and the slip

Kanzaki force field, the sum f corei + f slipi may be em-
ployed as a source term in the elastic continuum to
represent the whole dislocation.

The source representation theorem states that the

elastic field associated with f corei + f slipi will be11

ui(x) =

∫

R3

Gij(x− x′)
[
f corei + f slipj

]
dx′ (21)

for Gij(x) the linear elastic Green’s function (cf.67).

In this case, f slipi generates the linear elastic field of

a Volterra dislocation, ui(x)slip. It takes the familiar
analytic form of the elastic fields of an edge dislocation
(see11,67).

The core elastic field is then given by

ucorei (x) =
∑

n

fnj Gij(x− xn) (22)

Thus, using the core Kanzaki field in combination,
an elastic model of the dislocation may be produced,
one where the relaxed core’s geometry is properly cap-
tured via the core Kanzaki field. The displacement
field of this ‘corrected ’ model is:

ucorri (x) = uVolt
i (x) + ucorei (x), (23)

where uVolt
i (x) is the displacement field of a Volterra

dislocation (q.v.27), and the corrected stress fields may
then be obtained from Hooke’s law, as

σcorr
ij (x) = Cijpq

1

2

(
ucorrp,q + ucorrq,p

)

= σslip
ij + σcore

ij (24)

where

σcore
ij = Cijpq

∑

n

fnkGpk,q(x− xn) (25)

where Gpk,q(x) has a well-known explicit form (see67).

C. Multipolar expansions of the dislocation core

The lengthscales over which core effects are relevant
can be estimated by computing the core’s multipo-
lar moments. The multipolar moments would seek to
substitute the extended core’s force field by a set of
force dipoles, quadrupoles, octopoles, etc, that accu-
rately approximate the long range effects of the core’s
Kanzaki force field. Thus, the multipolar moments
could be envisioned to effect a correction on the clas-
sical Volterra dislocation. The first order correction,
the dipolar moments, has been the subject of inves-
tigation in the past by Clouet and collaborators68,69

in the context of screw dislocations, and was achieved
by energetic methods70. Previous works71–73 also at-
tempted to model the core as a set of ‘line force’ dipo-
lar arrangements using atomistic calculation methods
reliant on the core’s energy.

In these works, a core energy is defined as the elas-
tic energy that cannot be accounted for by the elas-
tic energy of the Volterra dislocation. An ansatz is
then made that the core’s elastic field may be mod-
elled by a set of equilibrated line forces in dipolar ar-
rangements. This results in a set of dipoles of force,
the moment tensor density of which is a symmetric
dipolar tensor that serves to model the stress field of
the dislocation core. In our case, the core field has
originally been obtained from the considerations sur-
rounding the core Kanzaki forces. These forces have
been shown to not generally be in mechanical equilib-
rium. However, the elastic energy to harmonic order
associated with core should be the same as that of
Clouet’s68,69 and Hirth and coworkers’71,72 accounts,
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since it comprises all non-Volterra effects too. Thus,
contrary to these works, the dipolar and higher or-
der multipolar moments we compute here do not ne-
cessitate that the core be in mechanical equilibrium;
given that individual dislocations are known not to
be in mechanical equilibrium21,7491, making such an
assumption regardless will inevitably lead to a descrip-
tion of the core fields that is not comparable to the
one discussed here. However, unlike in the case of
Clouet68,69 and Gehlen et al.71, the multipolar terms
introduced here do not account for all the core energy,
which is only attained by considering the full multipo-
lar expansion. The resulting dipolar and higher order
multipolar fields introduced here serve to study with
increasing accuracy the elastic near field of the dislo-
cation core. However, for the reasons outlined above
they do not bear a one-to-one comparison with the
alternative accounts produced by Clouet or Hirth and
coworkers. In this work, the dipolar and higher order
multipolar moment of arbitrary order follows directly
from the Kanzaki force field alone, and no exploration
of the core’s energy landscape is necessary other than
that leading to its structural minimisation.

Formally, the nth order multipolar moments of a
force distribution fp(x) relative to some origin of co-
ordinates are given by76:

γ
(n)
pk1...kn

=

∫

R3

xk1 · . . . · xknfp(x)dx (26)

If, as is the case in a crystalline lattice, the forces
are punctual and applied over specific perfect lattice
positions R ≡ (l, k), then fp(x) ≡ fp(l, k)δ(x − R),
whereupon

γ
(n)
pk1...kn

=
∑

l,k

Rk1 · . . . ·Rknfp(l, k) (27)

The continuum level multipolar field expansion of
fp(x) is then given by76

ui(x) =

∞∑

n=0

(−1)n

n!

∂nGip(x)

∂xk1
. . . ∂xkn

γ
(n)
pk1...kn

(28)

where Gip(x) is the elastic Green’s function of the
medium. The multipolar field expansion of fp(x) ap-
proximates to a very high degree of accuracy the long
range behaviour of the elastic field generated by fp(x).
This is because the elastic Green’s function decays
with 1/r, so each of its subsequent derivatives will de-
cay with an integer power of 1/r of increasing value11.
Thus, the far field due to fp(x) is very well represented
by the lowest order expansion terms76.

Here, fp(x) is the Kanzaki force field. As was jus-
tified by Gurrutxaga-Lerma and Verschueren21, the
multipolar moments of the lattice can be employed in
lieu of the whole Kanzaki force field to study the long
range behaviour of their associated elastic field. How-
ever, a distinction needs to be made between the slip
and core Kanzaki fields.

Indeed, as was shown in21 for the case of screw
dislocations, the multipolar expansion of the elastic
fields of a defect is only available if the Kanzaki force
field of the defect is compactly supported. This is

Core multipolar moments Al Ta Cu W

γ11 (eV) -7.22 30.61 -27.61 -56.35

γ12 (eV) -4.29 -4.67 -31.47 20.05

γ21 (eV) -4.28 3.68 50.43 20

γ22 (eV) -10.33 -1.65 -35.27 -9.63

γ31 (eV) -1.435 0 -49.1 -21.06

γ32 (eV) -6.83 0 -1.572 3.04

γ111(eV Å) -19.65 897.01 -331.23 -839.5

γ112(eV Å) -57.98 -237.22 250.72 -73.5

γ122(eV Å) -0.14 9.92 277.52 -118.46

γ211(eV Å) -111.55 -79.9 760.1 -118.45

γ212(eV Å) -62.3 -24.24 -490.03 -22.48

γ222(eV Å) 2.56 7.49 -1785.41 12.74

γ311(eV Å) -20.3 0 885.83 56.65

γ312(eV Å) -13.01 0 -93.04 156.65

γ322(eV Å) -2.14 0 -852.39 56.65

TABLE I: Computed values for the core multipolar
moments for the dipole and quadrupole core

corrections. Note that their relative symmetry is
reliant on whether the core field is in mechancial

equilibrium, which need not be the case.

because otherwise the central moments due to ever
more remote point forces will be of increasing in mag-
nitude, and lead to divergences when summed over.
This entails that individual edge dislocations do not
have a well-defined multipolar field because their slip
Kanzaki force field extends to infinity, but clusters of
edge dislocations where the slip surface is finite (e.g.,
a dipole of edge dislocations) do.

The core Kanzaki force field satisfies the compact-
ness requirement for the existence of an associated
multipolar field. The core’s multipolar field expan-
sion is therefore always possible, and offers a simple
way of estimating its long range effects. The multipo-
lar moments centred about the topological location of
the dislocation line are given by

γcorepk1...kn
=
∑

l,k

Rk1
· . . . ·Rkn

· f corep (l, k) (29)

The core multipolar moments associated with the
force fields given in fig.5 are collected in table I. The
effect of these corrections is discussed in the following
sections.

D. Energetic considerations

As stated in section II and in the Supplemental Ma-
terial, the energy of the Kanzaki force field is that of
the defect in the harmonic approximation. The energy
associated with the core Kanzaki field is (excluding
anharmonicities):

V core = V K − V slip (30)

where V K is the full dislocation’s energy in the har-
monic approximation, and V slip the Volterra disloca-
tion’s energy in the harmonic approximation. Both
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D. Energetic considerations

As stated in section II and in the Supplemental Ma-
terial, the energy of the Kanzaki force field is that of
the defect in the harmonic approximation. The energy
associated with the core Kanzaki field is (excluding
anharmonicities):

V core = V K � V slip (30)

where V K is the full dislocation’s energy in the har-
monic approximation, and V slip the Volterra disloca-
tion’s energy in the harmonic approximation. Both
have well-defined forms: V K is given by eqn.17 in the
Supplemental Material, and similarly

V slip =
X

l,k

f slip
i (l, k)uVolterra

i (l, k)

=
X

(l,k),(l0,k0)

�ij(l � l0, k � k0)BiBj�
2
S(l � l0, k � k0)

(31)

where �2
S(l � l0, k � k0) = 1 if the ‘bond’ (l, k)-(l0, k0)

crosses the slip surface, and 0 otherwise.
As a result, the core energy is a↵ected by the slip

Kanzaki field:

V core =
X

l,k

h
fK

i (l, k)ui(l, k) � f slip
i (l, k)uVolterra

i (l, k)
i

=
X

l,k

h
fK

i (l, k) + f slip
i (l, k)

i
uVolterra

i (l, k) or

=
X

l,k

f core
i (l, k)

⇥
uK

i (l, k) + uVolterra
i (l, k)

⇤
(32)

According to this definition, the total core energy
will grow with the dislocation line’s length. We may
average it over unit cell sizes in line’s direction to
obtain a dislocation line energy hV corei = V core/�z,
where �z is a unit cell width in the dislocation line’s di-
rection. We find that over a few unit cell distances, the
core’s line energy hV corei converges to a given value;
fig.8 shows this convergence for the case of fcc Al.

The definition of a core energy given by eqn.32 is
notionally analogous to the classical definition of the

core energy (see27,43,77). The line energy of a dislo-
cation is divided into two superposed terms: a elastic
term associated with the Volterra dislocation’s energy,
and a core energy term that accounts for the di↵er-
ences between the total and elastic terms. Typically
the elastic energy takes the form27

Ecore =
µB2

4⇡(1 � ⌫)
ln

r0

r
(33)

where r is the radial distance to the nominal dislo-
cation line, and r0 is the core radius; hereafter the
letter E is employed to distinguish the energy coming
from continuum level considerations from the energy
V coming from lattice level models. The core radius
is defined as the radial distance above which the elas-
tic fields of the dislocation satisfy linear elasticity77.
This makes the core radius an ambiguously defined
variable78, with the value of the core energy heavily
dependent on both its value and the assumption that
the dislocation and its core are planar (cf.27).

The Kanzaki force field approach provides with an
alternative, less ambiguous definition of the core’s en-
ergy because neither the core radius nor the planarity
of the core are necessary hypothesis to define it. As
may be seen in eqn.32, there is no need for a core ra-
dius because the ‘elastic’ part of the line energy (in
this case, the V slip in eqn.31) is extended to the dis-
location line itself: it sums over, atom by atom, the
product of the Bi�S(l�l0, k�k0) slip distribution with
the associated slip Kanzaki force field (represented in
fig.4) as expected. This quantity is non-divergent be-
cause both the forces and displacements have well-
defined values, and because it does not depend on lin-
ear elastic assumptions: V slip is given a well-defined
atomistic value. Arguably, eqn.31 could be taken
to the long wave limit, which recovers the classical
definition of the elastic energy of a Volterra disloca-
tion. Indeed, in the long wave limit, and neglecting
all core Kanzaki forces, fBK

x (x, y) = BµH(x)�0(y),
fBK

y = Bµ�(x)�(y), ux(x, y) = B/(2⇡)(arctan(y/x)+

1/(2(1� ⌫)xy/r2), uy(x, y) = B/(2⇡)((1� 2⌫)/(2(1�
⌫) ln 1/r +1/(2(1� ⌫))y2/r2), and with appropriately
bound limits

Eelastic =

Z

R2

fBK
i uidxdy =

µB2

4⇡(1 � ⌫)
ln

r

r0
(34)

Given that using our approach both the slip and the
full Kanzaki forces (and the associated a�ne maps)
are available in the atomistic system, the definition of
the core energy in eqn.32 allows us to o↵er an unam-
biguous account of how much configurational energy is
due to the presence of a non-Volterra dislocation core
as opposed to a perfect Volterra dislocation. More
specifically, the core energy definition provided ac-
counts for the energy involved in relaxing the atomic
positions from a pure Volterra configuration to the
minimised configuration.

Accordingly, the values of the core energy we find,
although within the same order of magnitude as those
commonly reported (see77,78), will nonetheless be dif-
ferent. For instance, we find that for fcc Al, over a few
unit cells the hV corei converges to a value of about

FIG. 8: Average core energy for fcc Al.

have well-defined forms: V K is given by eqn.17 in the
Supplemental Material, and similarly

V slip =
∑

l,k

f slipi (l, k)uVolterra
i (l, k)

=
∑

(l,k),(l′,k′)

Φij(l − l′, k − k′)BiBjχ
2
S(l − l′, k − k′)

(31)

where χ2
S(l − l′, k − k′) = 1 if the ‘bond’ (l, k)-(l′, k′)

crosses the slip surface, and 0 otherwise.
As a result, the core energy is affected by the slip

Kanzaki field:

V core =
∑

l,k

[
fKi (l, k)ui(l, k)− f slipi (l, k)uVolterra

i (l, k)
]

=
∑

l,k

[
fKi (l, k) + f slipi (l, k)

]
uVolterra
i (l, k) or

=
∑

l,k

f corei (l, k)
[
uKi (l, k) + uVolterra

i (l, k)
]

(32)

According to this definition, the total core energy
will grow with the dislocation line’s length. We may
average it over unit cell sizes in line’s direction to
obtain a dislocation line energy 〈V core〉 = V core/δz,
where δz is a unit cell width in the dislocation line’s di-
rection. We find that over a few unit cell distances, the
core’s line energy 〈V core〉 converges to a given value;
fig.8 shows this convergence for the case of fcc Al.

The definition of a core energy given by eqn.32 is
notionally analogous to the classical definition of the
core energy (see27,43,77). The line energy of a dislo-
cation is divided into two superposed terms: a elastic
term associated with the Volterra dislocation’s energy,
and a core energy term that accounts for the differ-
ences between the total and elastic terms. Typically
the elastic energy takes the form27

Ecore =
µB2

4π(1− ν)
ln
r0
r

(33)

where r is the radial distance to the nominal dislo-
cation line, and r0 is the core radius; hereafter the
letter E is employed to distinguish the energy coming
from continuum level considerations from the energy
V coming from lattice level models. The core radius
is defined as the radial distance above which the elas-
tic fields of the dislocation satisfy linear elasticity77.
This makes the core radius an ambiguously defined
variable78, with the value of the core energy heavily
dependent on both its value and the assumption that
the dislocation and its core are planar (cf.27).

The Kanzaki force field approach provides with an
alternative, less ambiguous definition of the core’s en-
ergy because neither the core radius nor the planarity
of the core are necessary hypothesis to define it. As
may be seen in eqn.32, there is no need for a core ra-
dius because the ‘elastic’ part of the line energy (in
this case, the V slip in eqn.31) is extended to the dis-
location line itself: it sums over, atom by atom, the
product of the BiχS(l−l′, k−k′) slip distribution with
the associated slip Kanzaki force field (represented in
fig.4) as expected. This quantity is non-divergent be-
cause both the forces and displacements have well-
defined values, and because it does not depend on lin-
ear elastic assumptions: V slip is given a well-defined
atomistic value. Arguably, eqn.31 could be taken
to the long wave limit, which recovers the classical
definition of the elastic energy of a Volterra disloca-
tion. Indeed, in the long wave limit, and neglecting
all core Kanzaki forces, fBK

x (x, y) = BµH(x)δ′(y),
fBK
y = Bµδ(x)δ(y), ux(x, y) = B/(2π)(arctan(y/x)+

1/(2(1− ν)xy/r2), uy(x, y) = B/(2π)((1− 2ν)/(2(1−
ν) ln 1/r+ 1/(2(1− ν))y2/r2), and with appropriately
bound limits

Eelastic =

∫

R2

fBK
i uidxdy =

µB2

4π(1− ν)
ln

r

r0
(34)

Given that using our approach both the slip and the
full Kanzaki forces (and the associated affine maps)
are available in the atomistic system, the definition of
the core energy in eqn.32 allows us to offer an unam-
biguous account of how much configurational energy is
due to the presence of a non-Volterra dislocation core
as opposed to a perfect Volterra dislocation. More
specifically, the core energy definition provided ac-
counts for the energy involved in relaxing the atomic
positions from a pure Volterra configuration to the
minimised configuration.

Accordingly, the values of the core energy we find,
although within the same order of magnitude as those
commonly reported (see77,78), will nonetheless be dif-
ferent. For instance, we find that for fcc Al, over a few
unit cells the 〈V core〉 converges to a value of about
〈V core〉Al = −1.34eV/Å. For comparison’s sake, the
core energy estimated using the classical elastic defini-
tion of eqn.34 for Al is Ecore = 0.42eV/Åfor r0 = 10Å,
which is close to previously reported values77. As is
shown in the Supplemental Material, the relationship
between the core energy and the multipolar fields is
not immediate.
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E. Example: Elastic field of the fcc Cu edge
dislocation

The procedure for obtaining an elastic model of a
dislocation based on the Kanzaki force field may be
summarised as follows:

1. A sufficiently large perfect crystal Ω0 is defined.

2. A dipole of edge dislocations is introduced into
the crystal by producing a crystallographic slip
of ±B/2 across the nominal slip surface.

3. The system is minimised so as to obtain the re-
laxed structure, Ωd.

4. The affine mapping u(l, k) is computed by com-
paring Ω0 and Ωd.

5. The Kanzaki force field fKi (l, k) is computed
by multiplying the affine mapping u(l, k) with
Ω0 (the perfect lattice’s) force constant matrix,
Φij(l − l′, k − k′).

6. The slip Kanzaki force field, f slipi (l, k) is com-
puted by multiplying the Volterra displacement

uslipi = Biχs(l − l′, k − k′) with Ω0 (the perfect
lattice’s) force constant matrix, Φij(l−l′, k−k′).

7. Compute the core Kanzaki force field as

f corei (l, k) = fKi (l, k)− f slipi (l, k).

8. Construct the core’s elastic fields by multiply-
ing the f corei (x)Gij(x), and summing over the
Volterra dislocation’s fields.

Here, owing to the particularly wide dislocation
core, focus is placed on the edge dislocation in fcc
Cu — the other metals’ can be obtained by analo-
gous means, and their respective field models are re-
produced in the Supplemental Material. Fig. 9 rep-
resents the 3 in-plane components of the stress field
of the fcc Cu edge dislocation, and compares their
shape and magnitude with the corresponding atom-
istic stress fields. Good agreement is observed. These
‘corrected’ field components are obtained by superpo-
sition of the Volterra dislocation’s fields with the core
Kanzaki forces, defined via As can be see, the prin-
cipal features of the dissociated core are adequately
captured by the elastic field implied by the Kanzaki
force field. The deviation from the Volterra disloca-
tion’s stress fields is notable particularly in the short
range, where the core width’s is significant enough to
entail considerable variations in the dislocation’s short
range interactions with other dislocations or defects.

Fig.10 shows the antiplanar effects that the Kanzaki
force field of the dislocation enable capturing. These
antiplanar components are not present in the classical
Volterra edge dislocation, and arise due to the stack-
ing fault at the core of the dislocation. As has been
shown in fig.7b, these entail a set of fz antiplanar
Kanzaki forces localised around the core, which result
in the stress fields shown in fig.10. These stress fields
are entirely localised about the dislocation core, but
of noticeable magnitude. Their long range effects may
be estimated via the dipolar moments associated with

these stress field components (collected in table I). In
either case, σ3i ∝ γ31, γ32. Thus, for σ32, for example,
we have

σ32 ≡ σzy ≈
2γ31xy + γ32

(
y2 − x2

)

4π (x2 + y2)
2 (35)

In this case, γ31 = −49.1eV, γ32 = 1.572eV. This is
entirely consistent with the computed Kanzaki core
field and the physical nature of the core: the core is
largely extended along the x = [1 1 0], but remains
very narrowly localised along the y = [1̄ 1 1] direction,
so accordingly the core’s antiplanar dipolar moment
along x, γ31, is bound to be large, whilst the dipolar
moment γ32 along y ought to be very small. In ac-
cordance, the long range effect of the core’s antiplane
component will be dominated by γ31, and decay as

σ31, σ32 ∝
γ31
r

(36)

The γ31 dipolar moment is of the same magnitude as
the core’s in-plane dipolar moments (≈ O(10)eV, see
table I), which signifies that all core contributions,
which act superposed to the Volterra dislocation’s
fields, are expected to decay with the same speed and
be of similar magnitude to one another. In particu-
lar, this means that ≈ 10B distances away from the
core will be of the order of several hundreds of MPa
stronger than predicted by the classical Volterra solu-
tion. This long range intensity of the core itself can
be shown to have strong effects on the mid-to-short
range interactions between dislocations. Fig.11 com-
pares the long range differences in σ12 (i.e., the re-
solved shear stress acting on the slip plane, with which
another dislocation on the same slip place would inter-
act) between the Volterra dislocation, the edge dislo-
cation represented by the Kanzaki force field, and the
Volterra dislocation corrected with the core’s dipolar
fields. As can be seen, the Volterra dislocation under-
estimates the σ12 stress field intensity; the dipolar cor-
rection improves on it in the long range, but it remains
insufficient to adequately captured the predicted in-
tensity of the shear stress field. Beyond the distances
shown in fig.11, (i.e., for distances of the order of or
longer than ≈ 100nm), the Volterra dislocation re-
mains an accurate representation of the dislocation’s
long range effects, so core effects remain important
only for short range interactions.

Similar remarks may be made about the edge dislo-
cations of the different metals discussed in this work.
In all these cases, summarised in figs.2, 3 and 4 of
the Supplemental Material, the Kanzaki force field en-
ables a detailed study of the deviations caused by the
non-Volterra core on the short and long range interac-
tions of the dislocation. Depending on factors includ-
ing the core’s width – which is generally small in bcc
metals and for high stacking fault fcc metals –, or the
slip plane’s curvature – which as has been discussed
is noticeable for the < 111 > {112} edge dislocation
in Ta –, the dislocation’s Kanzaki force field will im-
part noticeable differences in the short-to-midrange
interactions of the dislocation. Crucially, the Kan-
zaki force field facilitates a one-to-one map between
the atomistic crystalline lattice and the defect’s con-
tinuum level model. In the case of edge dislocations,
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it provides an entirely three dimensional model of the
dislocation and its core, and it enables capturing core
effects that are usually missed in other dislocation core
models such as the Peierls-Nabarro model27; whereas
the latter is dependent on the ad hoc assumption that
the core is planar and mollifies the slip distribution
according to physical considerations concerning the
Peierls barrier and the γ-surface (see27,79), the Kan-
zaki force field is a mechanistic expression of the forces
that would have to be applied on the atoms to gener-

ate the global topology of the defect. As such, they
facilitate a more complete description of the core’s ge-
ometry and long range fields. However, they do not
necessarily regularise the core unless the underlying
continuum level theory of elasticity employed along-
side them enables to do so: in the current work first
order linear elasticity has been employed, but alterna-
tively a non-local80 or gradient elasticity theories81–83

could have been employed, in which case the elastic
field models extracted from the Kanzaki force field
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would be regularised by construction(cf.82,83).

VI. CONCLUSIONS

This article has developed a general procedure for
computing the Kanzaki force field of a general ex-
tended defect. The Kanzaki force field has been de-
fined as the set of forces that would have to be applied
in a perfect harmonic lattice to generate the topol-
ogy of the said defect. The topology of the defect
is defined in terms of an affine mapping between the
positions of the atoms in the perfect lattice and the
positions of the atoms in the relaxed, defective lat-
tice; the affine mapping is necessary to ensure that
the harmonic approximation can be applied to each
atom in the defective lattice. The Kanzaki force field
is then obtained as the product of this mapping with
the perfect lattice’s force constant matrix. This article
has shown that (a) the Kanzaki force field generates
the topology of the defect in a harmonic lattice; (b)
the Kanzaki force field converges to the linear elastic
Burridge-Knopoff force representation of the defect in
the long wave limit; (c) the energy associated with
the Kanzaki force field is the energy of the defect in
the harmonic approximation. These results lead us
to conclude Kanzaki force field can be employed as
source terms of the elastic fields of the defect both in
lattice statics and dynamics, and in the elastic contin-
uum. The continuum level models are geometrically
true to the topology of the defect, and the associated
elastic fields an accurate representation of the defects.

Given that the affine mapping may be defined for
any extended defect, the Kanzaki force field method-
ology described in this work can be employed to model
general extended defects with the expectation of pro-
ducing atomistically informed models that are geo-
metrically and energetically accurate. These could be

employed in producing atomistically informed models
of dislocations, twin and grain boundaries, or cracks,
amongst other extended defects.

As means of an example, in this article particular
focus has been placed on the modelling of edge dislo-
cations in a number of cubic metals. The affine map-
pings for edge dislocations in fcc Al, fcc Cu, bcc W
and bcc Ta, obtained from energy minimisations using
appropriate phenomenological interatomic potentials,
have been employed to compute their corresponding
Kanzaki fore field. It has been shown that the Kanzaki
force field of edge dislocations consists of two distinct
contributions: (1) a Volterra contribution associated
with the slip or disregristry acting across the nominal
slip surface, which characterises the classical Volterra
dislocation; (2) a core distribution associated with the
dislocation’s core specific topology.

As has been discussed, the Volterra field agrees with
the continuum level force representation of a dislo-
cation based on the Burridge-Knopoff theorem. The
core Kanzaki field accounts for the deviations away
from the Volterra disregistry. This mostly concerns
the atoms about the dislocation core — away from it,
the computed Kanzaki force field is always Volterra.
As has been shown, the core Kanzaki field is entirely
three dimensional, generally entailing both in-plane
and antiplane force components. This provides a tool
for studying the non-planarity of the core of disloca-
tions, and their effects in short range interactions with
other dislocations or defects. Here, we have found that
the core of edge dislocations in fcc metals is bound to
be non-planar, owing to the antiplanar Kanzaki forces
associated with the intrinsic stacking fault lying at the
core. For bcc metals, the core may or may not be
perfectly planar depending on the specific crystallo-
graphic orientation of the dislocation.

Thus, when applied to the study of dislocations the
Kanzaki force field has been shown to produce a one-
to-one map of the dislocations core’s specific geometry,
capturing both planar and antiplanar effects. Further-
more, the Kanzaki force field offers an unambiguous
definition of the core energy of the dislocation. This is
because the Kanzaki force field allows for a clear cut
distinction between the forces necessary to generate
a perfect unitary disregistry across the slip surface
– which in the long wave limit becomes the classi-
cal Volterra dislocation –, and the forces necessary to
thereafter displace the atoms to the final, relaxed po-
sitions that define the actual dislocation. The work
involved in driving the perfect lattice to the Volterra
and relaxed positions (which is exerted by the Kan-
zaki forces), defines both the ‘slip’ energy and ‘core’
energy of the dislocation in an univocal way, and the
resulting line energies do not necessitate of a core ra-
dius to remain finite.

Core and other local effects can be studied via the
multipolar moments of the core, which have been de-
fined in this work, and can in general be simply ob-
tained by computing the Kanzaki force field’s actual
vectorial moments. These moments enable the obten-
tion of successively more accurate descriptions of the
near field about the core, and provide the basis for
an estimate of short range effects in the three spa-
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tial directions. As has been found, these are generally
weaker than the dislocation’s Volterra fields. Their re-
lationship to the core energy via the core’s distortion
tensor has been discussed as well.

In summary, the generalised Kanzaki force field has
been shown to offer a uniquely accurate tool to mode
crystalline defects in lattice statics and in the contin-
uum. The method enables the direct multiscale trans-
fer of information regarding the topology and energet-
ics of the defect from atomistic systems to the contin-
uum. This is facilitated because linear elasticity is a
specific limit of the harmonic lattice. With the use of
adequate atomistic tools, the Kanzaki force field ap-
proach avoids the need for more continuum level phe-
nomenological descriptions of the near field of disloca-
tions such as the Peierls-Nabarro model. In particular,
it would enable more accurate models of interactions
between dislocations and point defects84, facilitate the
transfer of information between concurrent multiscale
models85,86 of molecular dynamics schemes and dis-
location dynamics simulations of solids87,88, the cre-

ation of more accurate models for damage under lat-
tice irradiation14,89, or explicit continuum level mod-
els of extended defects such crowdions14,90, low angle
grain boundaries or twin boundaries45, amongst many
other potential applications. Furthermore, the Kan-
zaki force field provides a lattice description of the
defect; this may be employed in studying the mobility
of defects such as dislocations using lattice dynamics
approaches26.
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