428 research outputs found

    Impact of grain-coating iron minerals on dielectric response of quartz sand and implications for ground-penetrating radar

    Get PDF
    An unexpected result of ground-penetrating radar (GPR) surveys in the Great Victoria Desert (South Australia) was the lack of returning signal in what appeared to be a favorable environment for GPR, with dry silica sand and calcrete aggregates in the near surface. We found that the dielectric response of the dry sand samples had much higher dielectric losses than comparable sands from Western Australia and that the dielectric losses are controlled by the presence of iron oxide minerals, although iron concentrations themselves are only around 0.4%. The samples contained over 90% quartz, with subsidiary amounts of carbonates, kaolin, and smectite occurring with the iron oxide minerals as a coating on the quartz grains. An acid washing procedure removed the reducible iron oxide minerals from the clay coating but left the clays substantially unaltered. Subsequent dielectric and magnetic analysis of the samples indicates that the iron oxide minerals removed during the washing process are responsible for the reduction of GPR penetration at 250 MHz from approximately 10 m to only 1 m

    Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency.</p> <p>Results</p> <p>Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-γ) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression.</p> <p>Conclusion</p> <p>Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the unsubstituted parent gemini surfactant. Glycyl-lysine substitution in the gemini spacer improved buffering capacity and imparted a pH-dependent increase of particle size. This property conferred to the P/12-7NGK-12/L nanoparticles the ability to escape efficiently from clathrin-mediated endosomes. Balanced binding properties (protection and release) of the 12-7NGK-12 in the presence of polyanions could contribute to the facile release of the nanoparticles internalized via caveolae-mediated uptake. A more efficient endosomal escape of the P/12-7NGK-12/L nanoparticles lead to higher gene expression compared to the parent gemini surfactant.</p
    corecore