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Abstract 
 

This paper brings together analytic and simulation-based approaches to reserve risk in 
general (P&C) insurance, applied to the traditional actuarial view of risk over the lifetime of 
the liabilities and to the one-year view of Solvency II. It also connects the lifetime and one-
year views of risk. The framework of the model in Mack (1993) is used throughout, although 
the results have wider applicability. 

The advantages of a simulation-based approach are highlighted, giving a full predictive 
distribution, which is used to estimate risk margins under Solvency II and risk adjustments 
under IFRS 17. We discuss methods for obtaining capital requirements in a cost-of-capital 
risk margin, and methods for estimating risk adjustments using risk measures applied to a 
simulated distribution of the outstanding liabilities over their lifetime. 

Keywords: Stochastic reserving, IFRS 17 risk adjustment, Solvency II risk margin, Bootstrap, 
Cost-of-capital, Coherent risk measure. 

 

1. Introduction 
 

Within the Solvency II regulatory regime in Europe, a risk margin is required in addition to considering 
reserving risk within internal capital models or when applying the Standard Formula (see EU Commission 
(2009)). Furthermore, International Financial Reporting Standards 17 (IFRS 17), which sets requirements 
for financial reporting for insurance entities in countries where the International Accounting Standards 
Board has a mandate, requires a risk adjustment within the estimates of liabilities, effective from 1 
January 2021 (see IASB (2017)). Whereas Solvency II considers risk over a one-year time horizon, IFRS 17 
is based on the fulfilment cash-flows over their lifetime, which requires careful consideration of an 
appropriate time horizon for risk quantification. 

When quantifying reserve risk, there are several concepts to consider: there are analytic formula-based 
approaches that provide a standard deviation, there are simulation-based approaches that give a full 
predictive distribution, there is the traditional view over the lifetime of the liabilities, and there is the 
one-year view of Solvency II. This paper explores the concepts, highlighting the connections between 
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them, and illustrates the usefulness of simulation-based approaches with application to Solvency II risk 
margins and, in particular, IFRS 17 risk adjustments. 

 

2. The Traditional Actuarial View of Risk Over the Lifetime of the Liabilities 
 

Early work on reserve risk focused on statistical models for the incremental or cumulative claims in so-
called run-off triangles, deriving formulae for the root mean square error of prediction (RMSEP) until the 
liabilities are extinguished for a given model, where the RMSEP is a standard deviation of the forecasts, 
taking account of parameter uncertainty. The RMSEP, also known simply as the prediction error, can be 
approximated using the formula: 

𝑅𝑀𝑆𝐸𝑃 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 ≈  √𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (1) 

where the estimation variance is the uncertainty associated with the estimation of parameters, and the 
process variance is a measure of uncertainty associated with the underlying claims generating process. 
Note that model error is not quantified; the prediction error is calculated conditional on a proposed 
model. 

Thus, the problem of estimating the standard deviation of the forecasts analytically for a given model 
reduces to deriving formulae for the two components. Examples of models that have been proposed 
include the lognormal models of Kremer (1982), Verrall (1991), Zehnwirth (1994), and Barnett and 
Zehnwirth (2000); the gamma model of Mack (1991), Renshaw (1994), and England and Verrall (2001); 
the so-called distribution free approach of Mack (1993); the over-dispersed Poisson model of Renshaw 
and Verrall (1998); and many others. An overview can be found in Taylor (2000), England and Verrall 
(2002), and Wüthrich and Merz (2008). 

With the advent of powerful computers and simulation-based techniques such as bootstrapping and 
Markov-chain Monte Carlo (MCMC) methods, the emphasis changed from the standard deviation of the 
forecasts to a full predictive distribution. Although Ashe (1986) first proposed bootstrapping to assist 
quantifying reserve uncertainty, the popularity of the technique increased after the publication of 
England and Verrall (1999), where an appropriate residual definition was used in association with a 
special case of an over-dispersed Poisson generalised linear model (GLM) that gives the same forecasts 
as the traditional chain-ladder model (under certain constraints). The bootstrap procedure was 
explained, and the standard deviation of the bootstrap results was compared to analogous results 
obtained analytically for the same model, showing remarkable similarity and thereby validating the 
procedure. Bootstrapping was only used as a computationally simple way of obtaining an estimate of the 
prediction error; the usefulness of a full predictive distribution was not considered. That was rectified in 
England (2002) and England and Verrall (2002) where a second simulation step was included when 
forecasting to provide a full predictive distribution, not just a standard deviation. The appeal of 
simulation-based approaches is that they bypass the challenging mathematics and provide a full 
predictive distribution directly. When applied correctly, the standard deviation from such a distribution 
for a given model will match the RMSEP calculated analytically (subject to simulation error). Since a full 
distribution is available, any statistic of interest or risk measure can be estimated at no extra cost, for 
example, value-at-risk, tail value-at-risk, and so on. 

Bootstrapping the over-dispersed Poisson model of England and Verrall (2002) quickly became a popular 
technique for quantifying reserve risk in simulation-based capital models for Solvency II, and it became 
known simply as “the ODP model” or “the bootstrap model”. These are unfortunate monikers since 
England and Verrall (2002) only considered a special case of an over-dispersed Poisson GLM, and 
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bootstrapping is simply a statistical procedure that can, in fact, be applied to any well-specified statistical 
model. Attempting to rectify the misunderstanding, England and Verrall (2006) focused on predictive 
distributions for GLMs in general, including a GLM representation of the model of Mack (1993), called 
“Mack’s model” hereafter. In addition, the paper described how to obtain predictive distributions using 
log-normal regression models. 

In this paper, we focus solely on Mack’s model applied analytically, and a bootstrap representation of 
Mack’s model, since the model is straightforward, and analytic formulae for the main results are 
available. We recognise that the chain ladder model and the assumptions in Mack’s model are not always 
the most appropriate to use in practice, but at the same time the chain ladder model is a good starting 
point, and we believe the insights gained in this paper are applicable quite generally. 

 
2.1 A Distribution-Free Approach to Estimating the RMSEP of Reserve Estimates over their 

Lifetime 
 

For ease of exposition, and without loss of generality, we assume that the data consist of a triangle of 
cumulative claims: 

𝐶 , , 𝐶 , , … , 𝐶 ,

𝐶 , , … , 𝐶 ,

⋮
𝐶 ,

 

This can be written as  𝒟 = 𝐶 , : 𝑖 = 1, … , 𝑛; 𝑗 = 0, … , 𝑛 − 𝑖 , where 𝑛 = 𝐽 + 1 is the number of origin 
periods. Note that the development periods use a zero-based array for consistency with Merz and 
Wüthrich (2008, 2014). This simplifies a discussion of calendar period since it starts at one when calendar 
period is defined as origin period plus development period. 

The aim of reserving is to populate the missing lower portion of the triangle and to extrapolate beyond 
the maximum development period where necessary. One traditional actuarial technique that does this is 
the well-known chain-ladder technique. Mack (1993) proposed a stochastic version of the chain-ladder 
technique and focused on the cumulative claims with mean and variance: 

𝐸 𝐶 , |𝐶 , , … , 𝐶 , = 𝜆 𝐶 ,  and 𝑉𝑎𝑟 𝐶 , |𝐶 , , … , 𝐶 , = 𝜎 𝐶 ,    for 0 ≤ 𝑗 ≤ 𝐽 − 1.   (2) 

The expected value of the cumulative claims is proportional to the cumulative claims at the previous 
development period, and the variance is also proportional to the previous cumulative claims. Mack (1993) 
considered the model to be “distribution free” since only the first two moments of the cumulative claims 
are specified, not the full distribution. Mack (1993) derived estimators of the unknown parameters 𝜆𝑗 
and 𝜎  and, making further limited assumptions, provided formulae for the prediction errors of the 
forecast payments and reserve estimates. 

The estimators for 𝜆  and 𝜎  derived by Mack (1993) are given by: 
 

𝜆 =
∑ 𝑤 , 𝑓 ,

∑ 𝑤 ,

                                                                            (3) 

where 𝑤 , = 𝐶 ,  and 𝑓 , =
,

,
 

and 
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𝜎 =
1

𝑛 − 𝑗 − 2
𝑤 , 𝑓 , − 𝜆                                                        (4) 

The estimator for the final unknown parameter 𝜎  (in the case 𝑛 = 𝐽 + 1) is conventionally given by: 
 

𝜎 = min 𝜎 , 𝜎 ,
𝜎

𝜎
 

 
The estimator for the development factors 𝜆  is the standard volume weighted chain-ladder estimator. 
Then, the variance component 𝜎  is estimated as a residual sum of squares divided by degrees of 
freedom (within each development period). Mack (1993) derived formulae for the RMSEP of the chain-
ladder forecasts under the model in the usual way by providing estimators for the process variance and 
the estimation variance, and combining them using equation (1). 
 
From Mack (1993), the prediction variance (MSEP) of the reserves in origin period 𝑖 at time n is given by: 
 

𝑀𝑆𝐸𝑃 𝑅 |𝒟 ≈ 𝐶 ,

𝜎

𝜆

1

𝐶 ,

+
1

∑ 𝐶 ,

 

Where 𝑅 = 𝐶 , − 𝐶 ,  and both process variance and estimation variance are included. 

For the overall reserve prediction variance, a covariance adjustment is needed for the estimation 
variance, giving: 

𝑀𝑆𝐸𝑃 𝑅 |𝒟 ≈ 𝑀𝑆𝐸𝑃 𝑅 |𝒟 + 2𝐶 , 𝐶 , ×
𝜎

𝜆 ∑ 𝐶 ,

 

where the overall reserve estimate is given by: 

𝑅 = 𝑅  

 
2.2 Bootstrapping Mack’s Model 
 
By expressing Mack’s model as a GLM, England and Verrall (2006) showed how to bootstrap Mack’s 
model, providing a predictive distribution consistent with the assumptions in Mack (1993). Non-
parametric bootstrapping is a statistical procedure that involves creating many simulated sets of pseudo-
data by sampling with replacement from the original data sample, then obtaining the parameters of 
interest for the given model from each set of pseudo-data, giving a simulated joint distribution of the 
parameters. 

When bootstrapping, the data used for re-sampling must be independent and identically distributed. 
With regression-type models (such as GLMs), the “observations” are usually assumed to be independent, 
but are not identically distributed since the means (and possibly the variances) depend on covariates. 
Therefore, with regression-type models, it is common to bootstrap the residuals (suitably scaled such 
that the variance is approximately equal to one), rather than the data themselves, since the scaled 
residuals are approximately independent and identically distributed. The residual definition must be 
consistent with the model being fitted. A random sample of the scaled residuals is taken (using sampling 
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with replacement), and new pseudo-data values are obtained by inverting the definition of the scaled 
residuals in terms of the variable of interest. The model is then re-fitted to the pseudo data, giving revised 
parameter estimates. When repeated many times, a joint distribution of the parameter estimates is 
obtained. 

To obtain a predictive distribution, a second simulation is performed when forecasting into the future by 
simulating from the assumed process distribution, conditional on the parameters. This two-step 
simulation procedure (bootstrapping to obtain a distribution of the parameters followed by forecasting 
from the process distribution) automatically includes both parameter and process uncertainty.  

The key to understanding how to bootstrap Mack’s model is to re-express it as a model of the ratios 𝑓, 
rather than a model of the cumulative amounts 𝐶. Using equation (2) and taking 𝐶 ,  to the left-hand side 
gives: 

𝐸 𝑓 , |𝐶 , , … , 𝐶 , = 𝜆  and 𝑉𝑎𝑟 𝑓 , |𝐶 , , … , 𝐶 , =
,
  for 𝑗 ≥ 0. 

It should be noted that Mack (1999) also re-expressed the model in terms of the ratios. The ratios 𝑓 ,  
then become the focus of attention, with the associated 𝐶 ,  considered as fixed and known weights. It is 
then possible to define appropriate residuals for use in a bootstrap procedure for Mack’s model. Given a 
triangle of scaled residuals, the bootstrap procedure involves creating new triangles of scaled residuals, 
by sampling with replacement from the original scaled residuals triangle. The pseudo data are then 
obtained by inverting the formula for the scaled residuals in terms of the data of interest,𝑓. The original 
model used to obtain the residuals can be re-fitted to each triangle of pseudo data, to obtain new fitted 
development factors using equation (3). 

Since Mack’s model is a recursive model, forecasting proceeds one step at a time. Starting from the latest 
cumulative claims, the one-step-ahead forecasts can be obtained for each bootstrap iteration either non-
parametrically by re-sampling from the residuals again, or by drawing a sample from an assumed 
parametric process distribution. The forecast claims can be used to provide predictive distributions of the 
outstanding liabilities by origin period, calendar period, or in total. A complete list of steps can be found 
in Appendix 1. 

Tables 2 and 4 in Section 4 demonstrate that the standard deviation of the simulated distribution of the 
reserves using bootstrapping matches the analytic results of Mack (1993), connecting the analytic and 
simulation-based approaches for the lifetime view of risk. 

 

3. The One-Year View of Risk and Beyond 
 

The Solvency II regulatory regime in the European Union introduced the concept of the one-year view of 
risk. According to Article 101 of the Solvency II Directive: 

“The Solvency Capital Requirement (SCR) … shall correspond to the value-at-risk of the basic 
own funds of an insurance or reinsurance undertaking subject to a confidence level of 99.5% 
over a one-year period”, 

where the “basic own funds” is a Solvency II definition of the net assets on an insurer’s balance sheet. 
Although many details are missing, the definition of the SCR is complete from a theoretical perspective 
since it includes all four elements needed to estimate capital requirements: 
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1. A risk profile (distribution of the basic own funds) 
2. A risk measure (value-at-risk) 
3. A risk tolerance criterion (99.5%) 
4. A time horizon (one year) 

The selections made under Solvency II for the 4 items are not the only choices that could be made, but 
at least all 4 are included. Using simulation-based internal models, it seems straightforward (at least in 
theory) to estimate the SCR: just simulate the balance sheet one-year ahead (under the Solvency II rules), 
then apply value-at-risk at the 99.5th percentile level. 

The liabilities side of the opening Solvency II balance sheet contains an estimate of the expected 
outstanding liabilities. Each simulated balance sheet one year ahead also contains an estimate of the 
expected outstanding liabilities at that time, conditional on the payments that have emerged in the year. 
This introduces the concept of the profit or loss on the reserves, which is known as the claims 
development result (CDR) or simply the run-off result. 

For a given origin period 𝑖: 

𝐶𝐷𝑅
( )

= 𝑅
( )

− 𝐼
( )

− 𝑅
( )

                                                         (5) 

where superscripts represent calendar time 𝜏 = 𝑖 + 𝑗;  𝜏 ≥ 𝑛 and: 

𝑅
( )

 represents the estimated (undiscounted) reserves at the start of calendar year 𝑛 + 1 

𝐼
( )

= 𝐶 , − 𝐶 ,  represents the incremental payments made during calendar year 𝑛 + 1 

𝑅
( ) represents the estimated (undiscounted) reserves at the end of calendar year 𝑛 + 1 

Adding and subtracting the cumulative claims up to calendar year 𝑛 gives: 

𝐶𝐷𝑅
( )

= 𝐶 , + 𝑅
( )

− 𝐶 , + 𝐼
( )

+ 𝑅
( )

= 𝑈
( )

− 𝑈
( )

                      (6) 

where: 

𝑈
( ) represents the estimated (undiscounted) ultimate cost of claims at the start of calendar year 𝑛 + 1 

𝑈
( ) represents the estimated (undiscounted) ultimate cost of claims at the end of calendar year 𝑛 +

1 

If at the end of the year, the estimated ultimate cost of claims has gone up, there is a loss on the reserves, 

since 𝐶𝐷𝑅
( )

< 0, which must be made up from capital. Similarly, if the estimated ultimate cost of 

claims at the end of the year has gone down, there is a profit on the reserves, since 𝐶𝐷𝑅
( )

> 0. 

Under Solvency II, it is the change in the ultimate cost of claims over a one-year time horizon (the profit 
or loss over one year) that is important, and the Solvency II definition of reserve risk is in that context. 
The analogy on the assets side of the balance sheet is the change in the value of assets over one year. 

Clearly, the Solvency II definition of reserve risk is different from the traditional actuarial view of risk, 
which considers the outstanding payments over their lifetime. Several authors have discussed this, 
including Böhm and Glaab (2006), De Felice and Moriconi (2003, 2006), Merz and Wüthrich (2007, 2008), 
Ohlsson and Lauzeningks (2008a, 2008b, 2009), and Merz et al. (2009).  In particular, as Ohlsson and 
Lauzeningks observe, a study from the mutual insurers’ organisation AISAM-ACME (2007) notes that 
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“Only a few members were aware of the inconsistency between their assessment on the ultimate costs 
and the Solvency II framework which uses a one-year horizon”. 

 

3.1 The RMSEP of the Claims Development Result over One-Year under the Distribution Free 
Approach 

 

Recognising the difference between the lifetime view of risk and the one-year view of Solvency II, Merz 
and Wüthrich (2008) derived formulae for the RMSEP (ie standard deviation) of the CDR over one year, 
using the same model structure and underlying assumptions as Mack (1993), thereby providing the one-
year analogue to Mack’s model. For each origin period 𝑖, Merz and Wüthrich (2008) showed that at time 
𝑛: 

𝑀𝑆𝐸𝑃 𝐶𝐷𝑅
( )

|𝒟 ≈ 𝐶 ,

𝜎

𝜆

1

𝐶 ,
+

1

∑ 𝐶 ,

+ 𝐶 ,

𝜎

𝜆
𝛼

( ) 1

∑ 𝐶 ,

 

where 

𝛼
( )

=
𝐶 ,

∑ 𝐶 ,

     ∈   (0,1] 

For the total across all origin periods, Merz and Wüthrich (2008) showed that: 

𝑀𝑆𝐸𝑃 𝐶𝐷𝑅
( )

|𝒟

≈ 𝑀𝑆𝐸𝑃 𝐶𝐷𝑅
( )

|𝒟

+ 2 𝐶 , 𝐶 ,

𝜎

𝜆

1

∑ 𝐶 ,

+
𝜎

𝜆
𝛼

( ) 1

∑ 𝐶 ,

 

where 

𝐶𝐷𝑅
( )

= 𝐶𝐷𝑅
( ) 

 

3.2 Simulating the Claims Development Result over One-Year 
 

To obtain a predictive distribution consistent with Merz and Wüthrich (2008), it is necessary to simulate 
the CDR in a way that is consistent with Mack’s assumptions. Modifying equations (5) and (6): 

𝐶𝐷𝑅 ,
( )

= 𝑅
( )

− 𝐼 ,
( )

− 𝑅 ,
( )

= 𝑈
( )

− 𝑈 ,
( )

                                    (7) 

for each simulation 𝑠. The reserves at the start of the year are fixed, so it is only necessary to simulate 
the payments that emerge over the next calendar period, and also the estimated reserves at the end of 
the year, conditional on the payments that emerge. 
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The payments that emerge over the next calendar period can be obtained by bootstrapping Mack’s 
model, as described in Section 2.2. All that remains is to estimate the outstanding liabilities at the end of 
the year conditional on what has emerged, for each simulation. For this, it is necessary to augment the 
original payments triangle by the simulated payments that emerge over the next calendar period for each 
origin period, which are all an actuary sees over a one-year period. Conditional on the payments that 
emerge (for each simulation), it is then necessary to estimate the reserves at the end of the period. At 
this point, an automated reserving methodology is required; an actuary in the computer is required, or 
an “actuary-in-the-box”, as the procedure is known4. To remain consistent with the underlying 
methodology described in this paper, the standard chain-ladder method is adopted for this purpose. That 
is, for each new simulated triangle, the chain-ladder model is re-fitted conditional on the claims that 
emerge in the year, giving the reserves at the end of the year. This automatic re-fitting of the reserving 
methodology has led to the “actuary-in-the-box” procedure also being known as “re-reserving” (see, for 
example, Diers (2009)). 

It should be noted that it is not necessary to simulate again, conditional on the claims that have emerged 
over the next calendar period for each simulation (nested simulation), since the expected liabilities given 
by such a process would match the chain-ladder estimates and it is only the expectation that is required 
to compute the CDR. 

Given the payments that emerge in the year (using the bootstrap results) and the reserves at the end of 
the year (using the re-reserving approach), the CDR for each simulation can be evaluated using equation 
(7), giving a distribution of the CDR over one year. Once created, any risk measure can be applied to the 
distribution, not just the standard deviation. Although Ohlsson and Lauzeningks (2008a, 2008b) are 
usually credited with first describing the re-reserving approach, they note that “this simulation algorithm 
is by no means new”. 

In Section 4, we demonstrate that the standard deviation of the simulated distribution of the CDR using 
the re-reserving approach matches the analytic approach of Merz and Wüthrich (2008), connecting the 
analytic and simulation-based approaches for the one-year view of risk. Connecting the one-year view of 
risk and the traditional lifetime view is all that remains. 

 

3.3 The RMSEP of the Claims Development Result Beyond One-Year Ahead 
 

Merz and Wüthrich (2014) extended the results of Merz and Wüthrich (2008) beyond one-year ahead 
and provided formulae for the MSEP of the CDRs for a sequence of one-year views over the lifetime of 
the liabilities. Similar results were obtained by Röhr (2016) and Diers et al. (2016). 
 
Generalising equations (5) and (6), for each origin period 𝑖: 

𝐶𝐷𝑅
( )

= 𝑅
( )

− 𝐼
( )

− 𝑅
( )

= 𝑈
( )

− 𝑈
( )

                     (8) 

Thus, the CDR in calendar year 𝑛 + 𝑘 + 1 is the expected ultimate cost of claims at the start of the year 
less the expected ultimate cost of claims at the end of the year. 

Using a Bayesian representation of the chain-ladder model, Merz and Wüthrich (2014) showed that for 
each origin period 𝑖: 

                                                           
4 The term “actuary-in-the-box” was originally coined by Esbjörn Ohlsson. 
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𝑀𝑆𝐸𝑃 𝐶𝐷𝑅
( )

|𝒟

≈ 𝐶 ,

𝜎

𝜆

1

𝐶 ,

+ 1 − 𝛼
( ) 1

∑ 𝐶 ,

+ 𝐶 ,

𝜎

𝜆
𝛼

( )
1 − 𝛼

( ) 1

∑ 𝐶 ,

 

For the total across all origin periods: 

𝑀𝑆𝐸𝑃 𝐶𝐷𝑅
( )

|𝒟

≈ 𝑀𝑆𝐸𝑃 𝐶𝐷𝑅
( )

|𝒟

+ 2 𝐶 , 𝐶 ,

𝜎

𝜆
1 − 𝛼

( ) 1

∑ 𝐶 ,

+ 2 𝐶 , 𝐶 ,

𝜎

𝜆
𝛼

( )
1 − 𝛼

( ) 1

∑ 𝐶 ,

 

Merz and Wüthrich (2014) also showed that the sum of the MSEPs of the CDRs for each future calendar 
year equals the MSEP from the model of Mack (1993). Thus, the MSEP from Mack’s model can be 
partitioned into a sequence of one-year views, showing how the lifetime risk emerges over time, and 
linking the traditional lifetime view of risk with the one-year view of Solvency II (see Tables 2 and 3 in 
Section 4). 

 

3.4 Recursively Simulating the Claims Development Result Beyond One Year Ahead 
 
Again, it is desirable to have a full predictive distribution of the CDR at any future time period, from 
which any risk measure can be obtained. As Ohlsson and Lauzeningks (2008b, 2009) observe, “it is 
straightforward to extend the [re-reserving] simulation method to two or more years”. To achieve this, 
it is necessary to modify equation (8) such that: 

𝐶𝐷𝑅 ,
( )

= 𝑅 ,
( )

− 𝐼 ,
( )

− 𝑅 ,
( )

= 𝑈 ,
( )

− 𝑈 ,
( )

                     (9) 

for each simulation 𝑠. 

For 𝑘 ≥ 1, the reserves at the start of year 𝑛 + 𝑘 + 1, 𝑅 ,
( ), and the ultimate cost of claims at the start 

of the year, 𝑈 ,
( ), are now different for each simulation 𝑠. Note that when 𝑘 = 0, the re-reserving 

procedure of Section 3.2 provides 𝑅 ,
( ) and 𝑈 ,

( ), giving the starting values required for evaluating 

𝐶𝐷𝑅 ,
( ), when 𝑘 = 1. Again, note that the payments that emerge over each calendar period, 𝐼 ,

( ), 

are available from bootstrapping Mack’s model, so to complete the evaluation of  𝐶𝐷𝑅 ,
( ), it is only 

necessary to evaluate 𝑅 ,
( ) or 𝑈 ,

( ). For this, another iteration of the re-reserving procedure is 
performed. That is, the original claims triangle is augmented by a second payments diagonal (from 
bootstrapping Mack’s model), and the reserves (or ultimate cost of claims) are evaluated using the chain-
ladder model for each simulation, conditional on the claims that have emerged over the two-year period. 
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To evaluate 𝐶𝐷𝑅 ,
( ) for remaining values of 𝑘, the re-reserving procedure is repeated recursively, 

each time augmenting the original claims triangle by another diagonal (from bootstrapping Mack’s 
model) and applying the chain-ladder model for each simulation, conditional on what has emerged. This 
recursive approach provides a distribution of the CDR for each future calendar period, from which any 
risk measure can be calculated. Diers et al. (2013) also use the multi-year re-reserving approach to 
evaluate the cumulative emergence of the CDR, not the incremental one-year movements (see Section 
7). 

Tables 3 and 6 in Section 4 demonstrate that the standard deviation of the simulated distributions of the 
incremental CDRs using the recursive re-reserving approach match the analytic results from the Merz and 
Wüthrich (2014) formulae, again connecting the analytic and simulation-based approaches, and 
connecting the one-year view of risk and the traditional lifetime view. 

 

4. An Illustration of the Analytic and Simulation Based Approaches to Quantifying Reserve 
Risk 

 

To illustrate the methodology described in Sections 2 and 3, consider the data shown in Table 1, taken 
from Taylor and Ashe (1983), and used in several other previously published papers. Also shown in Table 
1 are the estimated chain-ladder factors, 𝜆 , and the parameters 𝜎  from Mack’s model. It is not implied 
that Mack’s model is optimal for this dataset. In particular, the data have not completely run-off by the 
final development period and a model that allows extrapolation into the tail would be more predictive. 
The results shown here are purely illustrative of the models of Mack (1993) and Merz and Wüthrich (2008, 
2014). 

In Table 2, the chain-ladder reserves are shown, together with the standard deviations of the forecasts 
(RMSEPs) from Mack’s model, giving a coefficient of variation of the total reserves under the lifetime 
view of risk of 13.1%. In addition, the RMSEPs of the CDRs over 1 year using the formulae from Merz and 
Wüthrich (2008) are shown in Table 2. The RMSEPs divided by the expected reserves at the start of the 
year are also shown, giving 9.52% for the total CDR. This one-year measure of risk is lower than the 
traditional lifetime view, and there has been some discussion about whether this is always the case. 

Table 3 shows the RMSEPs (ie standard deviations) of the CDRs for each future calendar period (the “full 
picture”) using the formulae from Merz and Wüthrich (2014). The result of squaring the values (to give 
variances), adding up across all columns within each row, and taking the square root is shown in the final 
column. A comparison with Table 2 shows that the square root of the sum of squares of the CDRs gives 
the same result as the RMSEP from Mack’s model over the lifetime of the liabilities. This demonstrates 
how the lifetime view of risk under Mack’s model can be partitioned into a sequence of one-year views. 
It also shows that the one-year view of risk must always be lower than the lifetime view since variances 
cannot be negative. This is an interesting result and links the lifetime view of risk with the one-year view 
of Solvency II using analytic approaches. 
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Acc. 
Year Reserves 

Mack 
RMSEP 

Mack 
RMSEP % 

Merz-
Wüthrich 

RMSEP 

Merz-
Wüthrich 
RMSEP % 

1 0 0 0% 0 0% 
2 94,634 75,535 79.82% 75,535 79.82% 
3 469,511 121,699 25.92% 105,309 22.43% 
4 709,638 133,549 18.82% 79,846 11.25% 
5 984,889 261,406 26.54% 235,115 23.87% 
6 1,419,459 411,010 28.96% 318,427 22.43% 
7 2,177,641 558,317 25.64% 361,089 16.58% 
8 3,920,301 875,328 22.33% 629,681 16.06% 
9 4,278,972 971,258 22.70% 588,662 13.76% 

10 4,625,811 1,363,155 29.47% 1,029,925 22.26% 
Total 18,680,856 2,447,095 13.10% 1,778,968 9.52% 

 

Table 2: Chain-ladder reserves, Mack RMSEP, and Merz-Wüthrich RMSEP. 

 

Table 4 shows the expected reserves, standard deviation (prediction error), and coefficient of variation 
from bootstrapping Mack’s model using 500,000 simulations. Also shown are the standard deviations of 
the one-year ahead CDRs using the re-reserving approach described in Section 3.2, and the standard 
deviations expressed as a proportion of the expected reserves at the start of the year. Comparison with 
Table 3 shows that the expected reserves are very close to the chain-ladder reserves, and the standard 
deviations of the simulated reserves from bootstrapping Mack’s model are very close to the analytic 
results given by Mack’s model. In addition, the standard deviations of the one-year ahead CDRs are very 
close to the analytic results given by the formulae from Merz and Wüthrich (2008). 

Note that since the bootstrap approach provides distributions of all future cash-flows (not just the 
reserves), it is straightforward to obtain a distribution of the discounted reserves. For example, Table 5 
shows a summary of the results of discounting the future cash-flows at 3% (assuming payments are made 
mid-way through the year). 

Table 6 shows the standard deviations of the CDRs for each future calendar period using the recursive re-
reserving approach. Again, the result of squaring the values (to give variances), adding up across all 
columns within each row, and taking the square root is shown in the final column. A comparison with 
Table 4 shows that the square root of the sum of squares of the CDRs are very close to the standard 
deviations from bootstrapping Mack’s model over the lifetime of the liabilities, and again demonstrates 
how the lifetime view of risk under Mack’s model can be partitioned into a sequence of one-year views. 

The values in Tables 3 and 6 show remarkable similarity, validating the simulation approaches described 
in Sections 3.2 and 3.4, and connecting the lifetime and one-year views of risk for analytic and simulation-
based approaches associated with Mack’s model. 

Again, an advantage of the simulation-based approach is that a full predictive distribution is available, 
from which any risk measure can be obtained. For example, Table 7 shows value-at-risk of the CDRs at 
99.5% (where VaR at 99.5% is the negative of the 0.5th percentile of the distribution of the CDR). 
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Acc. 
Year 

Expected 
Reserves 

Bootstrap 
Std Dev 

Bootstrap 
Std Dev % 

One-Year 
CDR Std 

Dev 

One-Year 
CDR Std 

Dev % 
1 0 0 0% 0 0% 
2 94,740 75,502 79.69% 75,502 79.69% 
3 469,419 121,842 25.96% 105,505 22.48% 
4 709,488 133,525 18.82% 79,900 11.26% 
5 984,602 261,623 26.57% 235,182 23.89% 
6 1,418,656 410,932 28.97% 318,385 22.44% 
7 2,178,489 558,356 25.63% 360,974 16.57% 
8 3,922,105 875,881 22.33% 629,558 16.05% 
9 4,277,964 972,731 22.74% 588,355 13.75% 

10 4,629,277 1,365,691 29.50% 1,030,505 22.26% 
Total 18,684,738 2,448,700 13.11% 1,778,428 9.52% 

 

Table 4: Bootstrap expected reserves, Bootstrap standard deviation, and One-Year CDR standard 
deviation. 

 

 

Acc. 
Year 

Expected 
Reserves 

Bootstrap 
Std Dev 

Bootstrap 
Std Dev % 

1 0 0 0% 
2 93,350 74,394 79.69% 
3 459,844 118,704 25.81% 
4 683,244 127,227 18.62% 
5 937,363 252,853 26.97% 
6 1,334,650 393,732 29.50% 
7 2,033,376 527,020 25.92% 
8 3,657,999 819,344 22.40% 
9 3,954,984 894,036 22.61% 

10 4,230,360 1,239,033 29.29% 
Total 17,385,171 2,247,923 12.93% 

 

Table 5: Bootstrap reserves, discounted at 3%. 
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5. Solvency II Risk Margins using the Cost-of-Capital Approach 
 

Solvency II stipulates that risk margins must be calculated using a cost-of-capital approach. The 
mechanics of the approach are straightforward. Given capital requirements for each future year as the 
reserves run-off, the risk margin is the sum of the discounted costs of capital, where the costs of capital 
are the capital requirements multiplied by the cost-of-capital rate. The cost-of-capital rate and discount 
rates that should be used in the calculations are prescribed and fixed. The main difficulty is obtaining the 
opening capital required, and the future capital requirements as the liabilities run-off. An example of the 
calculations for the Taylor and Ashe data is shown in Table 8. 

 

Future 
Time 

Projected 
Reserve 

Projected 
Capital 

Requirement 

Capital 
Profile 

Projected 
Cost of 
Capital 

Discounted 
Cost of 
Capital 

0 17,381,602 4,867,412 100.0% 292,045 283,539 
1 12,598,695 3,528,043 72.5% 211,683 199,531 
2 8,735,034 2,446,093 50.3% 146,766 134,311 
3 5,818,790 1,629,450 33.5% 97,767 86,865 
4 3,834,408 1,073,759 22.1% 64,426 55,574 
5 2,364,307 662,082 13.6% 39,725 33,269 
6 1,239,956 347,228 7.1% 20,834 16,940 
7 521,786 146,117 3.0% 8,767 6,921 
8 85,285 23,883 0.5% 1,433 1,098 

Total         818,047 
 

Table 8: Cost-of-capital risk margin calculations using the “Best Estimate” basis. 
 

The second column of Table 8 shows the expected reserves remaining in each future period, discounted 
to the start of that period at 3% (assuming payments occur half way through each year), and evaluated 
using the cash-flows from the chain ladder model applied deterministically. Discounting is used for 
consistency with Solvency II, where the “best estimate” is defined as the present value of future cash 
flows. The third column shows opening capital requirements, and the future capital requirements as the 
reserves run-off. The basis for these capital requirements is explained later in this section. The fourth 
column shows the capital requirements at each future period expressed as a percentage of the opening 
capital requirements. We call this the “capital profile”, and display it in Figure 1 (“best estimate” basis). 
The fifth column shows the costs-of-capital, calculated as the capital requirements multiplied by 6% (the 
Solvency II cost-of-capital rate). The final column shows the costs-of-capital discounted at 3% (chosen for 
simplicity), and the sum of the discounted costs-of-capital, giving a risk margin of 818,047. 

For Solvency II, the opening capital requirements should come from an “internal model” (usually 
simulation-based), or from the Standard Formula, where the inputs are in respect of the legally obliged 
business only (ie no new business). Insurance risk, catastrophe risk (in respect of unearned but legally 
obliged business only), and reinsurance default risk should be considered, but asset risk is generally 
excluded. In the example used in Table 8, we have simply used value-at-risk at 99.5% of the total CDR 
over one year (shown in Table 7) as a suitable proxy; as such, we are only considering risk associated with 
running off the losses in the claims triangle. 
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There are several approaches that could be used for estimating the future capital requirements. The 
internal model or Standard Formula could be used repeatedly, each time adjusting the inputs to reflect 
the reducing reserve volumes over time. Alternatively, various approximations have been prescribed and 
can be used, where justified. A popular approximation is to calculate future capital requirements as a 
proportion of the opening capital requirement, where the proportions are calculated in accordance with 
the reduction in the best estimate of the reserves over time. That is, the opening capital requirement is 
multiplied by a capital profile, where the capital profile is obtained by dividing the best estimate of the 
reserves at each future year by the opening best estimate. With this “best estimate” basis, capital 
requirements as a proportion of outstanding reserves are constant at each time period. The best estimate 
basis was used to obtain the capital profile (and hence the future capital requirements) in Table 8, but it 
is not the only capital profile that could be used. 

Although the best estimate basis is popular, it needs to be justified. For example, in a supervisory 
statement issued by the Prudential Regulation Authority (2014), the UK regulator stated that: 

“Firms should not approximate the future Solvency Capital Requirements used to calculate 
the risk margin as proportional to the projected best estimate unless this has been shown 
not to lead to a material misstatement of technical provisions.” 

Some insurance companies adjust the best estimate basis to increase capital requirements as a 
percentage of reserves as the reserves reduce, but there is no generally accepted approach for the 
adjustments. In this paper, we propose alternative methods to obtain both the opening capital 
requirement, and the capital profile for obtaining future capital requirements (which could then be used 
to justify, or otherwise, the best estimate basis). 

Returning to the four items required for a theoretically sound basis for capital requirements (see Section 
3), we need a risk profile, a risk measure, a risk tolerance criterion, and a time horizon. When obtaining 
capital requirements for risk margins, Merz and Wüthrich (2014) proposed using a distribution of the CDR 
at each future time period as the risk profile, and a multiple of the standard deviation or variance as risk 
measures, where a given multiplier controls the risk tolerance. Their formulae provided the standard 
deviations (RMSEPs) and variances (MSEPs) required. Merz and Wüthrich (2014) did not calculate the 
capital requirements nor risk margins explicitly, nor discuss the capital profile, but instead focused on 
how a sequence of risk margins calculated at each future period would compare to an opening risk 
margin, giving a “risk margin run-off pattern”. By doing so, the risk tolerance multiplier adopted is 
irrelevant, since it cancels out. Merz and Wüthrich (2014) also used the (undiscounted) best estimate 
basis, and graphically compared the three risk margin run-off patterns. 

In this paper, we focus on the capital profile for obtaining a risk margin (given an opening capital 
requirement), not the risk margin run-off pattern. Although graphs of the capital profile and risk margin 
run-off pattern look similar (starting at 100% and dropping to zero), the difference between them should 
be understood. 

Like Merz and Wüthrich (2014), we consider the best estimate basis, and multiples of standard deviations 
of the distributions of a sequence of CDRs at each future time period (multiples of variance are omitted 
since using a scale based on units squared could be criticised). In addition, we consider VaR at 99.5%, 
since this is more consistent with Solvency II’s choice of risk measure and risk tolerance criterion and is 
available from the simulation results. Implications for IFRS 17 are considered later. 

Table 9 shows capital requirements under the three bases. For VaR at 99.5%, the values were taken from 
the final row of Table 7. The standard deviations for the standard deviation basis were taken from Table 
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6 and the respective multiplier was set such that the opening capital requirement is the same as for VaR 
at 99.5%. Similarly, for the best estimate basis, the opening capital requirement was set to be the same. 

 

Future 
Time 

"Best 
estimate" St Dev 

Var @ 
99.5% 

0 4,867,412 4,867,412 4,867,412 
1 3,528,043 3,229,690 3,173,257 
2 2,446,093 2,429,744 2,383,086 
3 1,629,450 1,667,996 1,626,872 
4 1,073,759 1,177,111 1,150,758 
5 662,082 733,433 715,193 
6 347,228 352,932 337,560 
7 146,117 265,843 256,643 
8 23,883 134,929 132,911 

Risk Margin 818,047 822,321 810,816 
 

Table 9: Future capital requirements under different bases. 

 

Figure 1 shows the respective capital profiles, where for each basis, the capital requirements at each time 
period are expressed as a proportion of the opening capital requirement (the values can be calculated 
easily from Table 9). It should be noted that it was not necessary to select a multiplier for the standard 
deviation basis such that the opening capital requirements match in all cases, since the multiplier cancels 
out when calculating the capital profile. However, using the same opening capital requirement in each 
case provides a meaningful comparison of the respective risk margins, also shown in Table 9. 

It is clear from Figure 1 that the capital requirements drop rapidly. The standard deviation and VaR at 
99.5% bases are almost indistinguishable (in this example). It should be remembered that the total CDR 
is the sum of individual CDRs, and since their dependence is low, we expect the distribution of the total 
CDR to tend to normality, and therefore VaR at a fixed percentile to be a fixed multiple of the standard 
deviation. In this example, the best-estimate basis is close to the standard deviation and VaR bases, but 
that is not always the case with other data sets. 

Given the similarity of the risk profiles, it is no surprise that the risk margins associated with all three 
bases in Table 9 are close to each other (using the same opening capital amounts). 
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Figure 1: Capital profiles associated with Table 9, including VaR at 98% of the discounted outstanding 
reserves in each future year (see Section 6). 

 

6. IFRS 17 Risk Adjustments 
 

According to IFRS 17, an entity is required to estimate the discounted expected value (ie probability 
weighted mean) of the full range of possible outcomes of all future cash flows. In addition: 

“An entity shall adjust the estimate of the present value of the future cash flows to reflect 
the compensation that the entity requires for bearing the uncertainty about the amount and 
timing of the cash flows that arises from non-financial risk.” 

IFRS 17 is more principles based than Solvency II, and does not specify the techniques for calculating the 
“risk adjustment”, which is just a risk margin by another name. Although IFRS 17 does not specify the 
techniques that should be used, it does state that: 

“If the entity uses a technique other than the confidence level technique for determining the 
risk adjustment for non-financial risk, it shall disclose the technique used and the confidence 
level corresponding to the results of that technique.” 

The “confidence level” is the percentile level of a value-at-risk measure, although the risk profile 
associated with the risk measure is not directly specified. However, since the basis of the measurement 
of insurance contracts under IFRS 17 is the discounted expected value of all future cash flows, we can 
infer that the most appropriate risk profile is the distribution of the discounted future cash-flows over 
their lifetime, which is consistent with the traditional actuarial view of reserve risk. 

There are two main candidates for calculating the risk adjustment: a cost-of-capital approach, or a risk 
measure applied to the distribution of the discounted future cash-flows over their lifetime. A cost-of-
capital approach is likely to be popular given its use for Solvency II, however it is not clear that the one-
year view of risk under Solvency II is an appropriate basis for the underlying capital requirements under 
IFRS 17. Insurance entities will need to choose an appropriate basis for capital requirements in an IFRS 
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17 context if a cost-of-capital approach is used. We elaborate on this below. Furthermore, the cost-of-
capital rate and discount rates will be entity specific and will likely be different from Solvency II. 

The most straightforward approach to calculating a risk adjustment under IFRS 17 is to apply a risk 
measure to the distribution of the discounted future cash-flows. This implicitly takes the traditional 
lifetime view of reserve risk. In an Educational Monograph produced by the International Actuarial 
Association (2018), the following three risk measures were proposed: 

1. VaR: Value-at-risk (“confidence level technique”)  
2. TVaR: Tail value-at-risk (conditional tail estimation) 
3. PHT: Proportional hazards transform5 

Clearly, there are other possibilities, including a multiple of the standard deviation. Given the choice of 
risk measure, the only other input is the associated risk tolerance level (that is, percentile level for VaR 
or TVaR, and proportional hazards parameter for PHT). The risk adjustment is then the risk measure 
evaluated at the selected risk tolerance level less the mean (sometimes called a relative risk measure). 

Where a distribution of the future cash-flows has been obtained using simulation techniques, the three 
risk measures listed above can all be expressed as a weighted average of the simulations, sorted into 
ascending order. Given a percentile level, VaR has a single weight at a single simulation, and zero 
elsewhere. TVaR has equal weights above a given percentile level, and zero elsewhere, and PHT has a 
non-zero weight for each simulation, with increasing weights as the simulation values increase (see 
Appendix 2 and Figure 2). 

Value-at-risk is easy to explain to a non-technical audience, and has the advantage of simplicity, but since 
it is based on a single simulation, could be prone to simulation error (although there are techniques to 
mitigate this). It has a range from the minimum simulated value to the maximum, as the percentile level 
changes. It has been criticised since it does not adequately recognise skewness nor extremes, nor is it a 
coherent risk measure (as defined by Artzner et al. (1999)) since it does not obey the sub-additivity 
property. 

Tail value-at-risk is straightforward to calculate. It has a range from the mean to the maximum simulated 
value as the percentile level changes, and is better at recognising skewness and extremes since all values 
above a given percentile level are included in the calculation. It also has the advantage of being a coherent 
risk measure, and can be used for allocations of risk to sub-groups, where distributions have been 
combined before the risk measure is applied. 

The proportional hazards transform, introduced by Wang (1995) in the context of insurance, also has a 
range from the mean to the maximum simulated value as the associated parameter increases from 1 to 
infinity. Although the PH parameter does not have a natural interpretation, the PHT itself can be 
interpreted as a risk-adjusted expected value (see Appendix 2). It could be argued that the PHT is even 
better at recognising skewness and extremes since the weights increase as the simulation values increase, 
unlike TVaR where the weights are constant above a given percentile level. It is also a coherent risk 
measure, and again can be used for allocations of risk to sub-groups. Wang’s proportional hazards 
transform was first mentioned as a way of estimating a “prudential margin” for claims reserves in Wright 
(1997). 

Table 10 shows risk adjustments obtained by applying VaR, TVaR and PHT risk measures to the 
distribution of discounted total outstanding claims from bootstrapping Mack’s model. For VaR, the 75% 
“confidence level” (percentile) was chosen, to be consistent with the requirements of the Australian 

                                                           
5 For a description of the proportional hazards transform, see Appendix 2 
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Prudential Regulation Authority (see APRA (2015)). For TVaR, the 40th percentile was used, to give a risk 
adjustment that is approximately the same as VaR at 75%. Likewise, a proportional hazards parameter of 
1.85 was used to give a similar risk adjustment. The risk adjustments are higher than the cost-of-capital 
risk margins shown in Table 9. A graph of the TVaR and PHT weights are shown in Figure 2. 

Whatever technique is used to calculate the risk adjustment for IFRS 17, it is straightforward to obtain 
the equivalent “confidence level” from a simulated distribution of future cash-flows, as required for 
disclosure purposes. For example, using the “best estimate basis” cost-of-capital risk margin from Table 
9 as the risk adjustment, Table 11 shows that the equivalent “confidence level” is 65.3%. The analogous 
risk tolerance levels for the TVaR and PHT measures are 21.7% and 1.44 respectively. 

 

  
Value-at-

Risk 
Tail Value-

at-Risk 

Proportional 
Hazards 

Transform 
Risk Tolerance Level 75% 40% 1.85 

Risk Adjustment 1,468,622 1,431,645 1,455,235 
Best Estimate (Disc) 17,385,171 17,385,171 17,385,171 

Total 18,853,794 18,816,816 18,840,406 
Risk Adjustment % 8.45% 8.23% 8.37% 

 

Table 10: Risk adjustments using VaR, TVaR and PHT. 

 

 

 

Figure 2: TVaR and PHT weights against simulated total discounted reserves. 
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Cost-of-
Capital 

Value-at-
Risk 

Tail Value-
at-Risk 

Proportional 
Hazards 

Transform 
Risk Tolerance Level   65.3% 21.7% 1.44 

Risk Adjustment 818,047 818,062 818,048 818,047 
Best Estimate (Disc) 17,381,602 17,385,171 17,385,171 17,385,171 

Risk Measure 18,199,649 18,203,233 18,203,219 18,203,218 
Risk Adjustment % 4.71% 4.71% 4.71% 4.71% 

 

Table 11: Equivalent risk tolerance levels required to obtain the cost-of-capital risk margin. 

 
For this example, the equivalent confidence level of the Solvency II cost-of-capital risk margin looks quite 
low. The inputs of the cost-of-capital risk margin can be scenario tested to investigate the difference. For 
example, using a cost-of-capital rate of 11% instead of 6% would bring the equivalent confidence level 
up to 75%. Although equality can be ensured by manipulating the control parameters, there is no 
fundamental significance to such an equality. Nevertheless, it is informative to investigate differences 
between the approaches. 

Instead of viewing the Solvency II cost-of-capital risk margin as too low, an alternative explanation is that 
the distribution given by Mack’s model is too wide, and a narrower distribution would give a higher 
equivalent confidence level. It would be important in practice to investigate this further, for example, 
identifying outliers or specific data points unduly influencing the width of the distribution. Furthermore, 
Mack’s model may not be optimal; an alternative model might improve the precision of the forecasts. 

Returning to the basis for capital requirements if a cost-of-capital approach is used, an alternative for 
IFRS 17 is to calculate capital requirements from distributions of the outstanding future cash-flows at 
each future time period, not distributions of the (incremental) CDRs. That is, insurance entities need to 
choose whether capital requirements should be based on the lifetime view of risk, or the one-year view 
of Solvency II. The remainder of this section considers cost-of-capital risk adjustments for IFRS 17 under 
the lifetime view of risk. 

Estimating capital requirements under the lifetime view of risk requires distributions of outstanding 
payments at each time period given data up to that time period, which is not available at calendar period 
𝑛. However, bootstrapping provides a simulated distribution of all future cash-flows given data up to 
calendar period 𝑛, which can be used to approximate the distributions required at each future time 
period.  

From the perspective of calendar period 𝑛, the second column of Table 12 shows the expected value of 
the distribution of discounted reserves remaining at each future year (discounted at 3%, and assuming 
payments occur mid-way through each year), which can be compared with the deterministic values in 
the second column of Table 8. The third and fourth columns show the standard deviation of discounted 
and undiscounted reserves respectively. The fifth column shows the VaR at 98% of the discounted 
reserves, and the sixth column shows the VaR at 99.5%. The risk tolerance level of 98% was selected such 
that the value in the first year is close to the opening capital requirement in Table 9, allowing 
corresponding risk adjustments to be compared. 

Capital profiles associated with each of the columns in Table 12 are not shown but are easily calculated 
from the values in the table. Then using VaR at 98% of the initial distribution of discounted reserves as 
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the opening capital requirement in all cases except the final column, the corresponding cost-of-capital 
risk adjustments are shown in the final row of Table 12.  

 

Future Yr 

Expected 
(Disc. 

Reserve) 

St Dev 
(Disc. 

Reserves) 

St Dev 
(Undisc. 

Reserves) 

VaR @ 
98.0% 
(Disc. 

Reserves) 

VaR @ 
99.5% 
(Disc. 

Reserves) 
0 17,385,171 2,247,923 2,448,700 4,867,402 6,241,677 
1 12,601,574 1,900,311 2,044,912 4,142,042 5,329,406 
2 8,737,791 1,508,462 1,607,022 3,313,603 4,289,988 
3 5,819,876 1,101,628 1,165,327 2,432,676 3,155,930 
4 3,835,089 786,505 825,688 1,747,725 2,277,027 
5 2,364,929 528,488 550,999 1,181,030 1,538,848 
6 1,240,343 327,295 338,944 732,636 952,069 
7 522,078 198,068 202,648 454,451 594,302 
8 85,381 74,825 75,939 170,089 221,198 

Risk 
Adjustment 818,069 1,030,736 1,011,176 1,044,314 1,348,743 

 

Table 12: Expected value, standard deviation and value-at-risk of the discounted reserves at each future 
period. Also standard deviation of the undiscounted reserves. Cost-of-capital risk adjustments are 

shown for each basis. 
 

Using VaR at 98% for the capital requirements in all years gives a risk adjustment of 1,044,314 (using a 
cost-of-capital rate of 6%), with an equivalent “confidence level” of 68.9%. Although this is higher than 
the value shown in Table 11, it is still considerably below the risk adjustments shown in Table 10. Given 
the same opening capital requirement, the risk adjustment associated with the standard deviation basis 
(discounted) is similar to the VaR basis at 98%, indicating that, again, the capital profiles associated with 
these two bases are almost indistinguishable. The capital profile using the VaR basis at 98% applied to 
the distribution of the discounted reserves is included in Figure 1, and appears to the right of the other 
profiles (based on the CDR), as expected given the higher risk adjustment. 

Using VaR at 99.5% for the capital requirements in all years instead gives a risk adjustment of 1,348,743, 
which is closer to the risk adjustments shown in Table 10, but still below them. The capital profile 
associated with this method is very close to the equivalent profile using VaR at 98%; the higher risk 
adjustment is essentially a result of the higher opening capital requirement. 

In Section 8.1 of Merz and Wüthrich (2014), the standard deviations of the undiscounted outstanding 
payments given data up to each time period were approximated using the square root of the reverse sum 
of future CDR MSEPs at each period. The results of that approximation are shown in the second column 
of Table 13 (using the final row of Table 3). The third column shows the analogous results using 
simulation, taking the standard deviation of the reverse sum of simulated CDRs. The fourth and fifth 
columns show the VaR of the reverse sum of simulated CDRs at the 97.1% and 99.5% levels. The risk 
tolerance level of 97.1% was selected such that the value in the first year is close to the opening capital 
requirement in Table 9, again allowing corresponding risk adjustments to be compared. 
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 ------------------------ Reverse Sum of CDRs ------------------------ 

Future Yr 

Merz-Wüthrich 
Analytic 
RMSEP 

St Dev 
(Simulated) 

VaR @ 
97.1% 

VaR @ 
99.5% 

0 2,447,095 2,448,700 4,867,430 6,822,322 
1 1,680,341 1,684,741 3,297,114 4,601,011 
2 1,198,543 1,202,430 2,342,761 3,269,502 
3 808,063 810,293 1,565,416 2,171,462 
4 532,562 534,128 1,028,854 1,430,349 
5 315,998 317,089 609,497 844,694 
6 168,216 168,878 322,039 443,098 
7 108,489 108,943 207,041 288,425 
8 49,055 49,300 94,456 132,911 

Risk 
Adjustment 806,591 807,802 795,836 1,110,778 

 

Table 13: The square root of the reverse sum of the CDR MSEPs, together with the standard deviation 
and VaR of the reverse sum of simulated CDRs. Cost-of-capital risk margins are shown for each basis. 

 
Using VaR at 97.1% of the reverse sum of CDRs for the capital requirements in all years gives a risk 
adjustment of 795,836 (using a cost-of-capital rate of 6%), which is close to the values shown in Table 9 
for VaR at 99.5% applied to the distribution of incremental one-year CDRs (indicating that the respective 
capital profiles must be close in this example). Using the same opening capital requirement, but capital 
profiles obtained from the standard deviation of the reverse sum of CDRs (or the analytic equivalent) 
again gives similar risk adjustments. Using VaR at 99.5% of the reverse sum of CDRs for the capital 
requirements in all years gives a higher risk adjustment, as expected. 

It should be noted that the distribution of the discounted outstanding future cash-flows given data up to 
calendar period 𝑛 is the appropriate risk profile for the opening capital requirement in a cost-of-capital 
risk adjustment calculation for IFRS 17 (under the lifetime view of risk); it is only the remaining capital 
requirements that would ideally be based on data up to each time period (> 𝑛), not on the data available 
up to calendar period 𝑛 only. It should also be noted that it is not clear what risk tolerance level is 
appropriate under a cost-of-capital risk adjustment for IFRS 17; the choice is entity specific and is not 
prescribed. 

Appendix 3 shows that the square root of the reverse sum of CDR MSEPs is a prudent approximation to 
the expected standard deviation of the (undiscounted) outstanding payments at each time period, given 
data up to each time period, and is more appropriate under IFRS 17 than the standard deviation of the 
(undiscounted) outstanding payments at each time period, viewed from the perspective of time period 𝑛 
(except at time period 𝑛, when the two will be equivalent). Appendix 3 also shows that we expect the 
square root of the reverse sum of future CDR MSEPs at each period to be less than (or equal to) the 
standard deviation of the undiscounted outstanding payments given data up to calendar period 𝑛, and 
comparison between the second (or third) column of Table 13 and the fourth column of Table 12 
demonstrates that this is the case.  

Given the same opening capital requirement, we can infer from Appendix 3 that a cost-of-capital risk 
adjustment associated with the (undiscounted) outstanding payments at each time period, viewed from 
the perspective of time period 𝑛 will be prudent compared to a cost-of-capital risk adjustment associated 
with the reverse sum of CDRs (although as shown in Tables 9, 10 and 11, both may be lower than a risk 



26 
 

adjustment calculated simply from a risk measure applied to the distribution of outstanding payments 
given data up to calendar period 𝑛). 

It should be noted that the recursive re-reserving approach is computationally expensive. Therefore, 
although it may be better to use a capital profile obtained from a risk measure applied to a distribution 
of the reverse sum of CDRs to estimate future capital requirements for IFRS 17 (under the lifetime view 
of risk), using the distribution of the discounted outstanding future cash-flows given data up to calendar 
period 𝑛 may be expedient (with the risk tolerance level being used to control the level of prudence). 

Obtaining a risk adjustment for IFRS 17 using a cost-of-capital approach seems more problematic than 
simply using a risk measure applied to a distribution of the discounted future cash-flows in any event. 

 

7. Discussion 
 

In this paper, various concepts associated with the quantification of reserve risk have been connected. 
The analytic formula-based approaches of Mack (1993) for the lifetime view of reserve risk, and Merz and 
Wüthrich (2008) for the one-year view of Solvency II, have been compared to simulation-based results 
obtained by bootstrapping Mack’s model, supplemented with the re-reserving approach. Furthermore, 
the lifetime and one-year views were brought together by considering a sequence of one-year views until 
the liabilities are extinguished. Again, this was considered analytically, using Merz and Wüthrich (2014), 
and using a simulation-based approach by applying re-reserving recursively. 

The assumptions of Mack (1993) were used throughout this paper for simplicity, but it is not the only 
model that could be used. The MSEPs of the CDRs over multiple years for a range of models are 
considered in Wüthrich and Merz (2015). Analytic formulae for the MSEPs of the CDRs over multiple years 
for the additive model of Mack (2002) have been derived by Diers and Linde (2013): it is possible to apply 
a recursive simulation-based re-reserving approach as well since it is straightforward to bootstrap the 
additive model of Mack (2002). Simulation studies (by the first author of this paper) for the over-
dispersed Poisson model of Renshaw and Verrall (1998) also demonstrate that the lifetime view of risk 
can be partitioned into a sequence of uncorrelated one-year views when bootstrapped using England 
(2002) and applying the recursive re-reserving approach. We welcome similar investigations with other 
models. 

As Ohlsson and Lauzeningks (2008b, 2009) observe, the simulation approach is useful since it can be 
generalised. For example, the principles behind the re-reserving approach can be used when curves are 
fitted to the chain-ladder factors to allow extrapolation into the tail, or when non-constant scale 
parameters and curves are used with the over-dispersed Poisson model. Generalisations of the chain 
ladder model are also mentioned in Diers et al. (2016), where simulation methods are recommended for 
quantifying the various measures of uncertainty, due to difficulties with the analytic approach. With the 
simulation approach, it is important that the original model is bootstrapped appropriately when 
obtaining the forecasts, and that the same model is fitted to each simulation within the re-reserving 
procedure. There is no guarantee, however, that the expected CDR will be zero for each future year (this 
should be checked). When simulating, there is also no guarantee that the lifetime view of risk can be 
partitioned into a sequence of independent one-year views. Where a dependence is observed, it is more 
informative to consider the CDR cumulatively instead of incrementally. That is, consider the variance of 

𝑈
( )

− 𝑈 ,
( ) as 𝑘 increases, which will naturally converge on the lifetime view of risk. The cumulative 

emergence of the CDR was considered by Diers et al. (2013), Röhr (2016), and Section 6.1 of Merz and 
Wüthrich (2014). 
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In the context of Solvency II, the results of Sections 2 and 3 were used to derive different bases for a 
capital profile that can be applied to an opening capital requirement to obtain future capital 
requirements for a cost-of-capital risk margin calculation. These can be compared to the “best estimate” 
basis commonly used as an approximation. It was shown that the simulation approach can be used to 
obtain a VaR measure, and that this gives a very similar capital profile to a standard deviation measure. 
A problem with the simulation-based approach is that very many simulations are required to reduce 
simulation error in a value-at-risk measure at extreme percentiles. A stable measure of standard 
deviation requires far fewer simulations. We can therefore summarise our findings in the following 
recommendations: 

1. For Solvency II at least, VaR at 99.5% applied to a sequence of distributions of the 1 year-ahead 
CDRs is an appropriate risk measure for risk margin capital requirements. 

2. A recursive re-reserving approach can be used to obtain the distributions. 
3. VaR at 99.5% is an extreme percentile, and requires very many simulations for stability, but a 

stable measure of standard deviation requires far fewer simulations. 
4. Since capital profiles given by standard deviation and VaR measures are almost indistinguishable, 

a standard deviation measure could be used as a proxy, instead of VaR at 99.5%. 
5. When using the model of Mack (1993), the analytic formulae of Merz and Wüthrich (2014) giving 

the standard deviations of the CDRs may be sufficient without requiring simulation at all. 
6. Any opening capital amount (that can be justified) can be “plugged-in”, for example using an 

internal capital model or the Solvency II Standard Formula. 
7. Then a capital profile obtained using risk measures applied to a sequence of distributions of the 

CDR can be used to estimate future capital requirements for the risk margin calculation. 
8. This will be more justifiable than a capital profile obtained using “best estimates”, or it could 

justify using a “best estimate” profile as a proxy. 

A note of caution should be given concerning extreme percentiles. In this paper, results have been shown 
for various quantities at a variety of extreme percentiles, conditional on a given model. A model is merely 
a representation of reality with a small number of parameters, and the extreme percentiles should be 
viewed with an appropriate level of scepticism. This is true for any model, including economic scenario 
generators, underwriting loss models, and natural catastrophe models, commonly used to assist 
estimating Solvency II capital requirements. 

The estimation techniques used to determine the risk adjustment under IFRS 17 are not specified. In 
addition to a cost-of-capital approach, a risk measure applied to a distribution of the discounted future 
cash-flows is clearly a suitable candidate. Under the disclosure requirements, such a distribution is 
required anyway since whatever technique is used, the equivalent “confidence level” must be disclosed. 
In this paper, three risk measures were considered, which are easily applied to a simulated distribution. 

It should be noted that IFRS 17 requires a risk adjustment in respect of all fulfilment cash-flows, including 
expenses, and other outward costs, and reinstatement premiums and other recoveries. In the example 
in this paper, we have only considered a payments triangle, and a risk adjustment calculated solely from 
that would either need modifying to allow for other cash-flows involved in fulfilling the insurance 
contracts, or the triangle would need to include all relevant cash-flows. We have also assumed that 
provisions for unexpired risks will be calculated using the Premium Allocation Approach (PAA): if the 
Building Block Approach (BBA) is used instead, then a distribution of the discounted future cash-flows in 
respect of those risks will need to be included. 

IFRS 17 risk adjustments are also required on a gross and reinsurance basis (taking account of reinsurance 
credit risk). Clearly, it is the net position that is most relevant for the interpretation of an insurance 
entity’s financial position, so it seems appropriate to estimate risk adjustments from distributions of gross 
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and net discounted future cash-flows, then taking the difference as the reinsurance risk adjustment. 
Reinsurance modelling to obtain an accurate distribution of the net discounted future cash-flows 
(together with an assessment of credit risk) could be complex. In particular, the current actuarial practice 
of applying an approximate net-to-gross ratio looks increasingly inadequate (where non-proportional 
reinsurance treaties exist), and triangle methods for attritional claims may need to be supplemented by 
individual claims modelling for large claims, with accurate reinsurance modelling. 

Furthermore, risk adjustments are required for groups of contracts, not just at the aggregate entity level 
(or holding company level for a multinational group), which raises questions about allocation of risk and 
diversification. Again, a simulation framework can be used (using copulae to apply dependencies when 
aggregating), but the issues are complex and beyond the scope of this paper. 

If the cost-of-capital technique is used for IFRS 17 risk adjustments, insurance entities will need to choose 
between the one-year and lifetime views of risk when estimating capital requirements. Solvency II 
considers the one-year view of risk, whereas the lifetime view of risk could be used under IFRS 17. A 
distribution of the remaining total cash-flows at each future time period is appropriate as a basis for 
estimating capital requirements under the lifetime view (although as discussed in Section 6 and Appendix 
3, the time perspective becomes important). Furthermore, cost-of-capital and discount rates are entity 
specific under IFRS 17, but prescribed under Solvency II. The cost-of-capital technique is considerably 
more complex than simply applying a risk measure to a distribution of discounted future cash-flows, and 
requires more parameters to select and justify: it requires an opening capital requirement, future capital 
requirements, a cost-of-capital rate and a yield curve for discounting. Since the equivalent “confidence 
level” is required anyway under IFRS 17, it questions why the cost-of-capital method would be used at 
all. A distribution of discounted future cash-flows is required for the equivalent confidence level (which 
implicitly takes the lifetime view of risk), so it seems more straightforward to calculate IFRS 17 risk 
adjustments simply from a risk measure applied to that distribution. Given the distribution and choice of 
risk measure, the only input to select and justify is the entity specific risk tolerance level. 
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Appendix 1 – Bootstrapping Mack’s Model 
 

Mack’s model can be bootstrapped by completing the following steps, which can be performed without 
difficulty in a spreadsheet: 
 

1. Obtain the ratios 𝑓 ,  and standard chain-ladder development factors 𝜆  from cumulative data 
using equation (3). Note that the weights 𝑤 ,  are the denominator of the ratios 𝑓 , . 
 

2. Calculate the unscaled Pearson residuals using: 
 

𝑟 𝑓 , , 𝜆 , 𝑤 , = 𝑤 , 𝑓 , − 𝜆  
 

3. Adjust the Pearson residuals using 

𝑟 𝑓 , , 𝜆 , 𝑤 , =
𝑛

𝑛 − 1
𝑤 , 𝑓 , − 𝜆  

where 𝑛 = 𝑛 − 𝑗 − 1, being the number of residuals at development period 𝑗, 0 ≤ 𝑗 ≤ 𝐽 − 2. 
This is required to replicate the bias correction in Mack (1993) using the analytic approach (see 
the Appendix of England and Verrall (2006) for further details). 

4. Calculate the parameters 𝜎  from Mack (1993), where 
 

𝜎 =
1

𝑛 − 1
𝑤𝑖,𝑗 𝑓𝑖,𝑗 − 𝜆𝑗

2
=

1

𝑛

𝑛𝑗

𝑛𝑗 − 1
𝑤𝑖,𝑗 𝑓𝑖,𝑗 − 𝜆𝑗

2
 

 
That is, the parameters 𝜎  can be calculated as the sum of the unscaled Pearson residuals 
squared divided by the number of residuals minus 1, or simply the average of the bias-adjusted 
unscaled residuals squared. Calculate the final unknown parameter 𝜎  as described in Section 
2.2. 
 

5. Calculate scaled residuals using: 
 

𝑟 𝑓 , , 𝜆 , 𝑤 , , 𝜎 =
𝑤 , 𝑓 , − 𝜆

𝜎
                                 (𝐴1.1) 

 
6. Calculate scaled bias-adjusted residuals using: 
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𝑟 𝑓 , , 𝜆 , 𝑤 , , 𝜎 =

𝑛
𝑛 − 1

𝑤 , 𝑓 , − 𝜆

𝜎
 

 
7. Begin iterative loop, to be repeated N times (N=100,000, say): 

 
a. Resample the scaled bias adjusted residuals with replacement, creating a new triangle 

of residuals. It is important that the scaled bias-adjusted residuals are used at this stage 
to replicate the bias correction from Mack (1993) used in the analytic formulae. 
 

b. For each cell in the past triangle, solve equation (A1.1) for 𝑓, giving a set of pseudo-
ratios. That is: 

𝑓 , = 𝑟 ,

𝜎

𝑤 ,

+ 𝜆  

 
where 𝑟 ,  are the resampled scaled bias-adjusted residuals from the previous step. 
 

c. Obtain new chain-ladder development factors using equation (3) applied to the set of 
pseudo-ratios. That is: 

𝜆 =
∑ 𝑤 , 𝑓 ,

∑ 𝑤 ,

 

 
It should be noted that the same values of 𝑤 ,  are used for each bootstrap iteration, 
being the weights defined at step (1). 
 

d. Starting from the latest cumulative claims, forecast one-step-ahead either by re-sampling 
from the residuals again, or by drawing a sample from an assumed parametric process 
distribution. Using the non-parametric approach, for 𝑖 = 2,3, … , 𝑛: 

𝐶 , |𝐶 , = 𝜆 𝐶 , + 𝑟 , 𝜎 𝐶 ,  

where 𝑟  is resampled with replacement from the scaled bias-adjusted residuals. 
 
Using the parametric approach instead, it is necessary to select a parametric process 
distribution. Since it is desirable for the cumulative amounts to be positive, a Gamma or 
lognormal distribution would be reasonable choices. Using a Gamma distribution with 
parameters (𝑎, 𝑏): 

𝐶 , |𝐶 ,  ~ 𝐺𝑎𝑚𝑚𝑎 𝑎 , , 𝑏 ,  

where 𝑎 and 𝑏 are selected such that: 

𝐸 𝐶 , |𝐶 , = 𝜆 𝐶 ,  

𝑉𝑎𝑟 𝐶 , |𝐶 , = 𝜎 𝐶 ,  

Note that 𝑎 and 𝑏 are different for each simulation. 
 

e. Continue forecasting recursively from the cumulative amounts simulated at the 
previous step. That is, with a non-parametric approach, the two-steps-ahead forecasts, 
and beyond, can be obtained using: 
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𝐶 , |𝐶 , = 𝜆 𝐶 , + 𝑟 , 𝜎 𝐶 ,  

 
for 𝑖 = 3,4, … , 𝑛 and 𝑗 = 𝑛 − 𝑖 + 2, 𝑛 − 𝑖 + 3, … , 𝐽 − 1. 
 
Alternatively, with a parametric approach and a Gamma distribution, the two-steps-
ahead forecasts, and beyond, can be obtained using: 
 

𝐶 , |𝐶 ,  ~ 𝐺𝑎𝑚𝑚𝑎 𝑎 , , 𝑏 ,  
 
where 𝑎 and 𝑏 are selected such that: 
 

𝐸 𝐶 , |𝐶 , = 𝜆 𝐶 ,  
𝑉𝑎𝑟 𝐶 , |𝐶 , = 𝜎 𝐶 ,  

Note that 𝑎 and 𝑏 are different for each simulation. 
 

f. Calculate the incremental amounts by differencing in the usual way to give the 
simulated cash-flows (which can be discounted if required). 
 

g. Sum the simulated incremental amounts in the future triangle by origin year and overall 
to give the origin year and total reserve estimates. 
 

h. Store the results, and return to the start of the iterative loop until N bootstrap 
replications have been created and stored. 

 
The set of stored results forms the predictive distribution.  The mean of the stored results should be 
compared to the standard chain-ladder reserve estimates to check for errors.  The standard deviation of 
the stored results gives an estimate of the prediction error (RMSEP) analogous to Mack’s model. 
 
Note that when using a Gamma or lognormal process distribution, the incremental amounts can be 
negative since the cumulative claims at development period 𝑗 + 1 can be less than the cumulative claims 
at development period 𝑗 while still being positive. This is a characteristic of bootstrapping Mack’s model 
that can be useful when claims triangles include negative incremental amounts. 
 
Note also that using a Gamma or lognormal distribution for the cumulative amounts does not imply that 
the reserves are Gamma or lognormally distributed, or even skewed. The reserves are the sum of 
incremental payments, and even if the distributions of incremental payments are themselves markedly 
skewed, the distribution of the sum of incremental payments will tend towards normality unless the 
dependencies are very high. With Mack’s model (and many other stochastic reserving models), 
dependencies appear through the estimation uncertainty component only and are generally not high 
enough to result in a distribution of total reserves that is markedly skewed. 
 

Appendix 2 – The Proportional Hazards Transform 
 

According to Wang (1995): 

Given a non-negative loss random variable X, with survival function 𝑆 (𝑢) such that  

𝑆 (𝑢) = 𝑃𝑟{𝑋 > 𝑢} = 1 − 𝑃𝑟{𝑋 ≤ 𝑢} 
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Then 𝐸[𝑋] = ∫ 𝑆 (𝑢)𝑑𝑢 

The PH-mean with parameter ρ is given by 𝐻 (𝑋) where 

𝐻 (𝑋) = ∫ [𝑆 (𝑢)] 𝑑𝑢   (for 𝜌 ≥ 1) 

where the PH-mean refers to the expected value under the transformed distribution. 

To apply Wang’s proportional hazards transform to a set of 𝑁 non-negative simulated values, first order 
the simulations from the minimum, 𝑋 , to the maximum, 𝑋 . 

Then 𝑆(𝑋 ) = 1 − 𝑠
𝑁 for ordered simulation 𝑠, and the transformed empirical survival function 

𝑡 𝑆(𝑋 ) = 1 − 𝑠
𝑁 . 

Calculate PH-weights: 

𝜔 = 1 −  𝑡 𝑆(𝑋 )  

𝜔 = 𝑡 𝑆(𝑋 ) −  𝑡 𝑆(𝑋 )         𝑠 ≥ 2 

Then the estimated PH-mean is given by: 

𝐻 (𝑋) =
∑ 𝜔 𝑋

∑ 𝜔
= 𝜔 𝑋  

since ∑ 𝜔 = 1. Note that the weights are independent of the magnitude of the values 𝑋, depending 
only on their order. 

Note also that the proportional hazards transform 𝑍 ⟼ 𝑡(𝑧) = 𝑧  is concave for 𝜌 > 1, and provides 
a convex game (see Delbaen, F (2000)). 

 

Appendix 3 – IFRS 17 and the Standard Deviation of Outstanding Payments at Each 
Future Time Period 
 

We denote incremental payments in origin period 𝑖 and development period 𝑗 by 𝐼 ,  and cumulative 
payments by 𝐶 ,  for 𝑖 = 1, … , 𝑛; 𝑗 = 0, … , 𝐽. The available data at time 𝜏 ≥ 𝑛 is denoted by 𝒟 , and 𝑛 =

𝐽 + 1 (for simplicity). 

The future cash-flows at time 𝜏 ≥ 𝑛 over the remaining lifetime of the liabilities are given by: 

𝐼 , = 𝐼 , = 𝐶 , − 𝐶 ,  

The total uncertainty at time 𝜏 ≥ 𝑛, measured by the variance, is given by: 

𝑉𝑎𝑟 𝐼 , | 𝒟 = 𝑉𝑎𝑟 𝐶 , − 𝐶 , |𝒟 = 𝑉𝑎𝑟 𝐶 , |𝒟  
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Since the value-at-risk measure (in this context) is approximately a fixed multiple of standard deviation 
(see Section 5), ideally, we would like to determine the risk measure: 

𝜚 = 𝑉𝑎𝑟 𝐼 , | 𝒟 = 𝑉𝑎𝑟 𝐶 , |𝒟  

for the future cash-flows at time 𝜏 ≥ 𝑛 over their remaining lifetime. Viewed from time 𝑛, this provides 
expected risk measure: 

𝐸(𝜚 |𝒟 ) = 𝐸

⎣
⎢
⎢
⎢
⎡

𝑉𝑎𝑟 𝐼 , | 𝒟 |𝒟

⎦
⎥
⎥
⎥
⎤

 

Adopting Jensen’s inequality: 

𝐸(𝜚 |𝒟 ) ≤ 𝐸 𝑉𝑎𝑟 𝐼 , | 𝒟 |𝒟  

and using the tower property of conditional expectations we obtain the following lemma: 

Lemma A3.1: Assuming second moments exist, we have: 

𝐸(𝜚 |𝒟 ) ≤ 𝐸 𝑉𝑎𝑟 𝐼 , | 𝒟 |𝒟 ≤ 𝑉𝑎𝑟 𝐼 , | 𝒟  

From Section 6 of Merz and Wüthrich (2014), choosing a fixed origin period 𝑖 ∈ {𝜏 − 𝐽 + 1, … , 𝑛}, we 
have: 

𝐸 𝑉𝑎𝑟 𝐼 , |𝒟 |𝒟 = 𝐸 𝑉𝑎𝑟 𝐶 , |𝒟 |𝒟  

=  𝐸 𝑉𝑎𝑟 𝐶𝐷𝑅
( )

|𝒟 |𝒟  

Since the claims development results are uncorrelated (not necessarily independent), 

𝐸 𝑉𝑎𝑟 𝐼 , |𝒟 |𝒟 = 𝐸 𝑉𝑎𝑟 𝐶𝐷𝑅
( )

|𝒟 |𝒟  

Then since the expected value of the CDRs is zero, and using the tower property of conditional 
expectations, the following corollary is obtained (see Merz and Wüthrich (2014) for further details): 

Corollary A3.2: Assuming second moments exist, for the standard deviation risk measure 𝜚 ,  restricted 
to origin period 𝑖 ∈ {𝜏 − 𝐽 + 1, … , 𝑛}, we have: 
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𝐸 𝜚 , |𝒟 ≤ 𝐸 𝑉𝑎𝑟 𝐼 , |𝒟 |𝒟 = 𝑉𝑎𝑟 𝐶𝐷𝑅
( )

|𝒟  

≤ 𝑉𝑎𝑟 𝐼 , |𝒟  

where 

𝜚 , = 𝑉𝑎𝑟 𝐼 , |𝒟  

 

In the Bayesian representation of the chain ladder model of Merz and Wuthrich (2014), for 𝑘 ≥ 0 and 

𝑖 ≥ 𝑛 + 𝑘 − 𝐽, 𝑉𝑎𝑟 𝐶𝐷𝑅
( )

|𝒟  is estimated by 𝑀𝑆𝐸𝑃 𝐶𝐷𝑅
( )

|𝒟 , shown in Section 3.3. 


