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1 Introduction

A crucial element of non-life insurance is to set adequate reserves aside for
liabilities that are not fully known, and this is of great importance when
considering the risk of insolvency and the capital requirements for non-life
insurers. Determining the expected profit or loss in a non-life insurance
business is of growing importance because of the Solvency II regulations. For
an insurer operating in the non-life insurance business, the ultimate claims
amount of an accident year is often not known at the end of that year. It
will depend on the business line: for instance, in liability insurance it may be
expected that the claims settlement will last several years because of bodily
injuries and/or long legal processes. Also the possible time lag between the
occurrence of the accident and the manifestation of the consequences of the
event may cause a delay. The aim of claims reserving is to estimate the
outstanding claims and thereby enable the company to set its reserves. To
forecast these outstanding claims, a simple but generally accepted algorithm
is the classical chain ladder method (CLM).
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A key feature of the vast majority of claims reserving methids used in
practice, including the CLM, is that they assume that the data have been
aggregated. This aggregation is often done by year, but it could also be
done by quarter or month. Whatever time period is used, the key point
to note is that this aggregation implies some pre-smoothing of the data.
Claims reserving methods which use continuous models (parametric or non-
parametric) have been suggested in the literature but they almost invariably
involved the use of aggregated data which has therefore been reduced to
discrete time data. The approach of this paper is different in that it does
not assume that the data have been aggregated: it uses data recorded in
continuous time. As this is a new approach, we present methods which are
close to the CLM, but we keep them as straightforward as possible. It would
be possible to add sophistication to these, but this would detract from the
simplicity of the presentation and we leave this for future work. Because
the appraoch uses data recorded in continuous time and is based on the
philosophy underlying the CLM, it can be viewed as a continuous version of
the CLM. For this reason, we have named it ” Continuous Chain Ladder”.

Methods based on data recorded over a continuous time scale have previ-
ously been suggested in the actuarial literature (e.g. Norberg, 1986), but the
papers only rarely addressed the implementation of these methods. In the
practical context the results have generally been somewhat disappointing.
We believe that this somewhat disappointing outcome for continuous reserv-
ing so far is that the methods have been too distant from well-known methods
such as the CLM to appeal to actuaries. This paper therefore aims to show
how reserving using data recorded in continuous time can be viewed as a
natural transition from CLM to sophisticated modern statistical methods.

Using the technical language of non-parametric smmothing, this paper
will show that the classical CLM can be regarded as a structured histogram
on a triangle (Jones 1989). The original CLM groups the data and devel-
ops a multiplicative histogram model: we will simply follow the same ap-
proach without grouping the data. When the data are not grouped, it can
be treated as having a density on the triangle. This multivariate density
can be estimated using local linear smoothing methods, and it can then be
approximated on the triangle by a multiplicative density. It is also possi-
ble to relate this approach to regression. Linton and Nielsen (1998) showed
that their method of marginal regression (Linton and Nielsen, 1995), simply
minimized the distance from a multivariate regression function by two ad-
ditive components. Mammen, Linton and Nielsen (1999) developed smooth
additive regression as a kernel weighted projection of the data on an ad-
ditive subspace on non-parametrically defined functions. This research led
to a number of extensions including the generalised additive nonparamet-
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ric smooth backfitting of Yu, Park and Mammen (2008). This is related to
the approach taken in this paper, because the multiplicative model can be
regarded as a generalized additive model.

The paper is structured as follows...

2 The classical model for aggregated data

One of the most popular method used in reserving is the classical chain
ladder method (CLM) which uses simple aggregated triangular arrays of
data. Several stochastic models for CLM have been formulated which model
directly the aggregated data (see for example Verrall and England 2002, or
Wüthrich and Merz, 2008). This paper considers a new and modern approach
based on smoothing methods which will provide a different perspective on
claims reserving, which gives more insights into classical reserving methods
such as the CLM. This section describes briefly the classical formulation
which will be a benchmark throughout the paper.

In classical reserving methods it is assumed that the available information
is a run-off triangle with dimension m, i.e. a triangle with m rows. Thus, the
information is provided in an aggregated way where, in theory, any aggrega-
tion periods could be considered, such as quarters, years etc. Depending on
the data being considered, each cell in the triangle could contain the number
of reported or paid claims (counts data) or aggregated payments (reported
or paid). Traditional methods such as the CLM are often applied to all of
these types of triangles, with different distributional assumptions used as ap-
propriate. For example, a Poisson model would be suitable for counts and
an over-dispersed Poisson for aggregated payments. This paper considers
only counts in order to make the density approach as clear as possible. The
extension to payments data will be considered in future work.

We assume, without loss of generality, that the data are available as a
triangle, and denote the set indexing the periods for which the data are
available by Im = {(i, j) : i = 1, . . . ,m, j = 1, . . . ,m; i + j − 1 ≤ m}.
Here i denotes the origin period and j the delay period (i.e. j − 1 periods
delay from i). The aggregated incurred counts triangle can then be written
by ℵm = {Nij : (i, j) ∈ Im}, where Nij is the total number of claims of
insurance incurred in period i, which are reported in period i + j − 1 i.e.
with j − 1 periods delay from year i. An example of such aggregated data is
shown in the top graph in Figure 1. This data set corresponds to numbers
of reported claims (incurred counts) observed for claims that were incurred
in the m = 19 past years.

It is usual that data in this triangular form are used for classical reserving
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methods and it is possible to predict the outstanding claims and construct
a reserve starting from aggregated data. In order to do this, the methods
produce projections in the lower and unexperienced triangle Jm = {(i, j) :
i = 2, . . . ,m, j = 1, . . . ,m; i+ j− 1 > m}. The traditional CLM projections
can be derived from maximum likelihood estimation under a Poisson model
for the aggregated data (see Kuang, Nielsen and Nielsen, 2009). Note that
such a model is often quite a reasonable model for counts data. Thus, it is
assumed that the cells in the triangle are independently Poisson distributed
with cross-classified mean, which is specified by the following multiplicative
parametrization:

E[Nij] = αiβj, (i, j) ∈ Im. (1)

By solving the well-known identification problem for this kind of method (see
Kuang, Nielsen and Nielsen, 2009), standard tools from generalized linear
models provide estimates for the parameters αi and βj, for i, j = 1, . . . ,m.
From these estimates the predicted outstanding claims for each underwriting
period are obtained by summing the predicted values for the claims in the
lower triangle by row. Also, outstanding claims for future calendar period
can be predicted by summing the diagonals in the lower triangle. Both
calculations are the common output required from reserving methods. An
illustration of the classical chain ladder method on real insurance data is
given in Section 5. The next section introduces the continuous approach
which underlies the new method proposed in this paper.

2.1 A regression view of the density estimation prob-

lem

As indicated above, the aim of this paper is firstly to reformulate the re-
serving problem in terms of a multivariate density estimation problem and
then to develop kernel methods to estimate nonparametrically this density.
The classical CLM provides one approach to this non-parametric density es-
timation problem as is explained in this subsection. This new perspective
on further understanding classical reserving methods such as the CLM can
provide greater understanding and may also be the key to makel progress in
developing modern and powerful methods.

Several papers in the statistical literature have described the connection
between the density and the regression problems. This connection has moti-
vated new density estimation methods such as local linear estimator, which
will be applied in this paper to the reserving problem. We begin by describing
the connection as Fan and Gijbels (1996, pp. 50) did in the unidimensional
setting, and consider first the simple univariate scenario to make the exposi-
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tion more straightforward. Let X1, . . . , Xn be a random i.i.d. sample from a
population X with continuous density f . Let a1 < · · · < am denote equally
spaced grid points defining m−1 contiguous intervals or bins Bj = (aj, aj+1],
for j = 1, . . . ,m − 1. The extreme points a1 and am are typically chosen in
such a way that the support of f is contained in (a1, am]. Let Λm denote the
bin size (Λm = a2−a1). Also for each j = 1, . . . ,m, let xj denote the bin cen-
ter (xj = (aj+1+ aj)/2), and Nj the bin count defined as the number of data
falling in the interval Bj. It is clear that Nj follows a binomial distribution
with size parameter n and success probability pj =

∫
Bj

f(x)dx. Therefore

when m → ∞ or equivalently Λm → 0 we have the following approximations:

E

[
Nj

nΛm

]
≈ f(xj)

and

V

(
Nj

nΛm

)
≈

f(xj)

nΛm

,

for j = 1, . . . ,m. Thus the density problem is equivalent to a heteroscedastic
regression problem based on the data, {(xj, Nj/Λmn), j = 1, . . . ,m}, which
are approximately independent. Equivalently the regression model can be
written for the bin counts Nj as

Nj = r(xj) + εj, (2)

with r(·) = nΛmf(·) being the regression function. From a regression esti-

mate r̂(·) the target density can be estimated as f̂(·) = r(·)nΛm.
Now if we move to the two-dimensional scenario it can clearly be seen that

the classical chain ladder method approaches the density problem through the
regression formulation in equation (2). Specifically, the CLM estimates a two-
dimensional density f supported in the triangle Im and using a multiplicative
structure. The bins are constructed as squares of the form Bij = (ai, ai+1]×
(bj, bj+1], for i, j ∈ Im, with bin length Λm = a2 − a1 = b2 − b1 being
constant. Thus, from the bin counts Nij (the number of data falling in Bij)
the regression problem can be formulated as

Nij = r(zij) + εij, (3)

based on the data {(zij, Nij, i, j ∈ Im}. The two-dimensional covariate
zij = (xi, yj), is defined such that xi and xj are the midpoints of the intervals
(a1,i, a1,i+1] and (a2,j, a2,j+1], respectively, for i, j ∈ Im. The regression func-
tion is then related with the density by r(·, ·) = nΛmf(·, ·). By assuming that
the unknown regression function r is multiplicative i.e. r(·, ·) = r1(·)r2(·),
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the problem can be solved using classical generalized linear models (GLM)
with the logarithm as the link function and some specified error distribu-
tion (see for example England and Verrall, 2002, for a description of this
approach). The classical Poisson (for claim counts) as defined by equation
(1) relies on the Poisson approximation of the binomial distribution. Clearly
each bin count, Nij, follow a binomial distribution with parameters n and
pij, where n is the total ultimate number of claims for each accident year
and pij =

∫
Bij

f(z)dz. It is well known that the binomial distribution can

be approximated by a Poisson distribution: Nij →֒ P (npij), which justifies a
GLM model with log link function and Poisson error distribution. Note that
the larger n and the smaller pij the better is the approximation and therefore
the expected performance of the classical CLM.

The above description shows how CLM focuses on the regression approach
when considering the estimation of a density and thus it can only work on
binned data. The following section describes methods which aim to estimate
the underlying density and which are therefore more suited to the consider-
ation of individual data using continuous time.

3 The continuous density approach

Once the reserving problem has been formulated in terms of a bivariate den-
sity estimation problem, several powerful methods from modern statistics
can assist in providing good solutions. Note that the approach now changes
from the regression perspective which is useful when the data are given in an
aggregated way (see Appendix A), to a continuous approach where the target
function is a continuous two-dimensional density function. As was discussed
in the previous section the chain ladder method is defined from the regression
perspective, which also starts from a histogram or a binned version of the
data. This is also the case with many other approaches in reserving that at-
tempt to introduce smoothing ideas. Some of these approaches are examined
in Section 4. This section focuses on the aim of this paper, which is a contin-
uous version of the CLM. This provides solutions for the reserving problem
with better statistical properties and which can be extended to the context of
individual claims data. Subsection 3.1 describes how a simple kernel density
estimator can be developed from the naive and inefficient histogram, which
is the basis of classical CLM. A sequence of steps to improve the local linear
and multiplicative bias correction estimators can then be introduced, which
lead to the proposal for a continuous CLM.
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3.1 From the histogram to kernel smoothing

Kernel methods for density estimation arise in an intuitive and natural way
from the naive histogram estimator. The application of these kernel meth-
ods in reserving relies on the recognition that the classical CLM consists of
the construction of a structured histogram on a triangle. A histogram is the
simplest nonparametric approach to estimate a density function. The his-
togram separates the data into distinct non-overlapping bins, and constructs
bars (hypercubes) with heights defined as the proportion (or the number)
of observations falling into each bin. This proportion gives an estimate of
the probability density function at the mid point of the bin (see subsection
2.1). As in Section 2.1 we start from the simpler univariate scenario and
extend this afterwards to the two-dimensional situation. Consider again a
random sample, X1, . . . , Xn, from a population X with a continuous den-
sity f . Consider m− 1 contiguous intervals Bj = (aj, aj+1] or bins with bin
length Λm, which divide the support of f , and let xj be the midpoints, for
j = 1, . . . ,m−1. The height of the bar of the histogram with base Bj provides
an estimate of the probability density function at the midpoint, xj. Thus, an
estimator of the density f at any point x0 in the support of f can be derived
from the limit concept of ratio between probability mass in a neighborhood
of a point and the size of the neighborhood. Using proper mathematics it is
an application of the mean value theorem of integral calculus, which implies
that

lim
Λm→0

P (X ∈ Bj)

Λk

= f(x) if x ∈ Bj (j = 1, . . . ,m− 1).

From this expression the histogram estimator at any point x0 in the support
is defined by

f̂hist(x0) =
n−1

∑n

i=1 I{Xi ∈ Bj}

Λm

if x0 ∈ Bj (j = 1, . . . ,m).

Note that the histogram is not a continuous function, but has jumps at the
grid points and has zero derivative everywhere else. This gives estimates
which are not only aesthetically undesirable, but, more seriously, could pro-
vide to an untrained observer with a misleading impression. In fact, the
shape of the histogram can potentially be influenced by where the bin cen-
tres are placed. From the above formulation, these are defined by the choice
of the width Λm and the location of the first point a1. Partly to overcome
this difficulty, and partly for other technical reasons (see for example Sil-
verman, 1986, for a further explanation), it is of interest to consider more
sophisticated estimators which can overcome these drawbacks, such as kernel
methods.
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Moving now to the two-dimensional scenario, assume that Z1, . . . , Zn is
an i.i.d. random sample from a population Z = (X, Y ), having bivariate
continuous density f . Consider a split of the support of f into squares of
the form Bij = (a1,i, a1,i+1] × (a1,j, a2,j+1], with constant length of the sides
Λm = a1,2 − a1,1 = a2,2 − a2,1. Following analogous arguments to those used
in the univariate case, the simple histogram estimator can be defined at any
point z0 = (x0, y0) in the support of f by

f̂hist(z0) = ν(z0)/nΛ
2
m,

where ν(z0) is the number of sample data falling in the square which contains
z0. From this formulation the typical kernel density estimator can be seen as
a moving histogram which defines the bins centered at each point where the
density is estimated. In this case the bins can overlap and the data falling in
the bin are given different weights according to their proximity to the esti-
mation point. Thus, the kernel estimator overcomes the problem of the naive
estimator concerning the location of the bins but also it provides a smooth
estimate for the target continuous density. The simplest kernel density esti-
mator is the multivariate extension of the Parzen-Rosenblatt estimator. For
any estimation point the support, z0 = (x0, y0) this is defined as

f̂h(z0) = |h|−1

n∑

i=1

Kh(z0 − Zi), (4)

where Kh(·) is a two-dimensional kernel and h = (h1, h2)
t ∈ IR2

+ is a band-
width parameter with |h| = h1h2. Here we use a simple multiplicative kernel
given by Kh(u, v) = Kh1

(u)Kh2
(v) withKh1

(u) = h−1
1 K(u/h1) andK being a

unidimensional symmetric probability density function. This multiplicative
structure is the more convenient for our purposes in the paper, but other
general kernels such as spheric kernels could also be considered, and also
more general bandwidth parameter such as matrices (see for example Wand
and Jones, 1995, pp.103).

Simple kernel methods suffer from well-known boundary problems and
further corrections have been suggested in the literature to overcome these
problems. Reserving can be viewed as a typical density estimation problem
in the boundary region defined by the claims triangle. The triangular sup-
port requires refined boundary corrections methods to be considered, and
local linear density estimation can be useful in this context. Subsection 3.2
starts by considering the local linear approach to provide an estimator of the
density in the triangle. Since the aim is to predict the density in the whole
square which includes the future in the lower triangle, we will next assume a
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multiplicative structure and use the marginal integration method by Linton
and Nielsen (1995) to provide a multiplicative local linear estimator for the
density. This provides the required predictions in the forecast set (the lower
triangle in the square).

3.2 The unstructured local linear estimator in the ob-

servation triangle

Nielsen (1999) extended the principle of local linear estimation by Lejeune
and Sarda (1992) and Jones (1993) to nonparametric multivariate density
estimation with arbitrary boundary regions. Let f denote a two-dimensional
density having support in the triangle I = {z = (x, y)t|0 ≤ x, y ≤ T, x +
y ≤ T} with any T > 0. Here for simplicity we assume the origin period
is equal to zero. Nielsen’s local linear estimator is defined at each point
z0 = (x0, y0)

t ∈ I as the solution Θ̂0 of the following minimization problem:

(
Θ̂0

Θ̂1

)
= argmin

{
lim
b→0

∫

I

[
f̃b(z)− Θ̂0 − Θ̂t

1(z0 − z)
]2

Kh(z − z0)dz

}
, (5)

where f̃b(z) = n−1(b1b2)
−1
∑n

i=1 Kb(z − z0) is the standard kernel estimator
in (4) at the point z with bandwidth parameter b = (b1, b2)

t ∈ IR2
+ and

two-dimensional kernel K. As above in section 2.1 a multiplicative kernel,
K(x, y) = K(x)K(y) is used, with K being a unidimensional symmetric
kernel function.

Note that this estimator is only defined in the observation triangle and
therefore is not suitable for forecasting purposes. Recall that the forecast
horizon is giving by J = {z = (x, y)t|0 ≤ x, y ≤ T, x + y > T}. In the next
section we assume a multiplicative structure for the density and provide an
estimator which can be used to provide forecasts in the lower triangle J .

3.3 The structured local linear density estimator

Now we assume that the target density in the whole square S = {z =
(x, y)t|0 ≤ x, y ≤ T} is multiplicative i.e. f(x, y) = f1(x)f2(y). The
marginal integration method introduced by Linton and Nielsen (1995) can
be extended to the density estimation problem in 3.2 through the following
two-step method:

Step 1. From the available data estimate the two-dimensional density
in the observation set I by an estimator f̂I

h (x, y), such as the local
linear estimators resulting from (5).
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Step 2. Assume that the target density is multiplicative, f(x, y) =
f1(x)f2(y) and estimate f1 and f2 through the following minimisation:

minf1,f2

∫

I

(
f̂I
h (x, y)− f1(x)f2(y)

)2
dxdy. (6)

The minimization at Step 2 can be performed using an iterative algorithm
such as the following:

1. Consider an initial estimator of the component f1 denoted by f̂
(0)
1 . Let

f̂ (0) denote the unstructured estimator for the density in I defined in
Step 1 above.

2. Using f̂
(0)
1 , f(x, y) ≈ f̂

(0)
1 (x)f2(y) so that

∫

Iy

f(x, y)dx ≈ f2(y)

∫

Iy

f̂
(0)
1 (x)dx

with Iy = {x|(x, y) ∈ I}. Estimate the density f2 by

f̂
(1)
2 (y) =

∫
Iy
f̂ (0)(x, y)dx

∫
Iy
f̂
(0)
1 (x)dx

.

3. Using f̂
(1)
2 , calculate the updated estimator for f1 by

f̂
(1)
1 (x) =

∫
Ix
f̂ (0)(x, y)dy

∫
Ix
f̂
(1)
2 (y)dy

.

4. Repeat steps 2-3 until the desired convergence criterion is achieved.

This provides estimates for any point in the square S = {z = (x, y)t|0 ≤
x, y ≤ T}. The only requirement in practice is to choose the kernel func-
tion K and a bandwidth parameter h which introduces a suitable level of
smoothing. The first choice is usually made for practical or theoretical rea-
sons and it usually has a minor impact on the performance of the estimator
(see for example Wand and Jones, 1995, for more details about the choice of
kernel). However, the choice of the bandwidth parameter can significantly
affect the performance of the kernel estimator and because of its importance,
it is considered in subsection 3.5.
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3.4 A multiplicative bias correction

In this section, we consider a second improved kernel estimator using bias
reduction techniques. It is well-known that kernel methods such as those
proposed above provide biased estimates. In the context of this paper, bias
should be corrected since it could lead to incorrect reserves with serious
consequences for the solvency of non-life insurers. Note that the variability
is not so relevant because the insurer is usually interested in aggregated values
of the estimates such as the total reserves for the future calendar years or
even the overall total in the range of years under consideration.

There are several alternative bias reduction methods to correct the kernel
estimates at points of large curvature. Here we consider the multiplicative
bias correction (MBC) method proposed by Jones, Linton and Nielsen (1995)
for univariate density estimation. The estimator is again introduced in two
steps. Firstly a multiplicative bias corrected estimator for the density in
the observation triangle is defined, which is an unstructured MBC estima-
tor. Secondly, the marginal integration method is applied to provide the
structured MBC density estimator.

Consider the unstructured local linear estimator defined in subsection
3.2. Denote this estimator by f̂I

LL,h and recall that it is supported in I. The
unstructured MBC estimator is defined (having the same support) from the
following expression:

f̂I
MBC,h(z) = f̂I

LL,h(z)ĝ
I
LL,h(z) (7)

where ĝILL,h is the local linear estimator of the ratio f(z)/f̂I
LL,h(z) obtained

by minimising the expression below in Ψ0.

minΨ0,Ψ1

{
lim
w→0

∫

I

[
g̃(z;w)−Ψ0 −Ψt

1(z0 − z)
]2 (

f̂I
LL,h(z)

)−1

Kh(z − z0)dz

}

(8)
Now from the estimator defined in (7) and using a similar method to that

described in subsection 3.3 the MBC estimators of the univariate densities
f1 and f2 are obtained, together with the structured MBC estimator as their
product.

3.5 Choice of degree of smoothing

To make the kernel methods presented above aoolicatble in practice, it is
necessary to make a suitable choice of the bandwidth or smoothing parame-
ter, and for this optimality criterion is often used. However, for any kernel
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estimate the theoretically optimal bandwidths are unfeasible in practice and
therefore it is necessary to provide a reasonable data-driven bandwidth es-
timate. The problem of bandwidth selection also arises also when other
estimators such as smoothing splines are used. In this case the smoothing
parameter defines the appropriate weightings of fit andd smmothness. Sec-
tion 4 describes some of the approaches that have been previously considered
in the reserving literature.

For the kernel density estimators defined above, the bandwidth is a two-
dimensional parameter h = (h1, h2) which controls the degree of smoothing
in each direction. Specifically h1 and h2 move between 0 and infinity, thereby
corresponding to extreme cases of undersmoothing and oversmoothing, re-
spectively. h1 defines the degree of smoothing in the underwriting direction
and h2 in the development direction.

There are several possible methods suggested in the literature to choose
the bandwidth for a two-dimensional density. One of the simplest and most
commonly used is the crossvalidation method (see for example Wand and
Jones 1995). The crossvalidation method is an in-sample technique which
aims to estimate the optimal bandwidth for the estimator using the sample
data. In this paper, two candidates are suggested to estimate the density from
a sample in the reserving triangle using a multiplicative structure. These are
the local linear estimator and a multiplicative bias-corrected version. We
propose here simply to use crossvalidation to find good unstructured density
estimators in the observed triangle, and from such estimators to calculate the
corresponding structured densities following the method described in Section
3.3.

For either of the unstructured density estimators defined in the triangle I,
the LL estimator (f̂I

LL,h) or the MBC estimator (f̂I
MBC,h), the cross-validation

score is defined by

CV(h) =

∫

I

f̂I
h (z)

2dz − 2
n∑

i=1

∫

I

f̂
I,[−i]
h (z)dF̃n(z), (9)

with f̂
I,[−i]
h being the leave-one-out version of the estimator f̂I

h , and F̃n being
the empirical distribution function from the sample. The cross-validation
bandwidth is then defined as the minimizer of the above CV score. The
crossvalidation multiplicative bias-corrected estimator is defined in a similar
way.
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4 Related nonparametric methods in reserv-

ing

The reserving literature contains other suggestions for smoothing methods,
and these can be related to the kernel density methods proposed in this paper.
The aim of this section is also to demonstrate the novelty of the approach in
this paper.

An early paper where the notion of smoothing is applied to the reserving
problem is Verrall (1996) which was followed by England and Verrall (2001).
The latter paper formalizes a traditional approach in actuarial practice which
consists of smoothing the development factors in the deterministic chain lad-
der approach. England and Verrall (2002) contains a description of this and
further develops it in the framework of the generalized linear models (GLM).
Chain ladder models are parametric models where the number of parameters
increases in a linear way with the dimension of the run-off triangle. From a
triangle of dimension m and assuming the Poisson model for the entries in
the triangle with multiplicative structure such as (1), the log-likelihood can
be written as

L (αi, βj;ℵm) =
∑ ∑

(i,j)∈Im

{−αiβj + αiβj log(Nij)} , (10)

(omitting a constant term). Verrall (1991) and Kuang, Nielsen and Nielsen
(2009) proved that the maximum likelihood estimators, {α̂i, βj, 1 ≤ i, j ≤

m}, provide the chain ladder estimates by N̂ij = α̂iβ̂j, for each i, j =
1, . . . ,m. The intuition in this paper indicates that low levels of aggregations
in the triangle would lead to serious problems in the likelihood behavior.

Apart from the well-known problem of identification of the parameters,
which was solved by Kuang, Nielsen and Nielsen (2008), maximum likelihood
methods tend to break down when the dimension goes to infinity. Grenan-
der’s method of sieves was suggested (Greman and Hwang 1982) as a method
for modifying classical estimators so as to make them appropriate for such
nonparametric problems. When the dimension of the parameter space goes
to infinity, it is suggested that the optimization is attempted within a subset
of the parameter space, with this subset then being alowed to increase with
the sample size. The sequence of subsets from which the estimator is drawn
is called a “sieve” and therefore the resulting estimation method is called
the “method of sieves”. Also the growth rate is controlled by the sieve size
which, in practice, has to be chosen .

to illustrate the approach, we consider the example used by Greman and
Hwang (1982) which is the histogram. For any univariate density f the max-
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imum likelihood estimator based on an i.i.d. sample, X1, . . . , Xn, is defined
as the maximizer of L(f ;X1, . . . , Xn) = Πn

i=f(Xi). If nothing is known about
the target density the maximum cannot be achieved. This problem could be
solved by restricting the set of candidates where the optimization is carried
out. A sieve can be defined for this problem as the following sequence

sf,m = {f : f is a p.d.f. constant on Bj j = 1, . . . ,m}

with Bj being m contiguous intervals or bins dividing the support of f with
bin size equal to Λm. Then the method of sieves consists of maximizing
the likelihood L in the subspace sf,m, allowing m to grow with the sam-
ple size n. The solution, which is thus a sieve estimator, is the well-known
histogram estimator which was described in Section 2.1. Other examples
in density estimation include penalized maximum likelihood estimators. A
kernel smoother such as the simple Parzen-Rosemblat-type estimator, de-
scribed in Section 3.1, is close to the sieves method but differs in the fact
that it is not a maximum likelihood estimator for the density (see Greman
and Hwang, 1982, for more details). Thus, the kernel approach in this paper
moves away from the classical method of sieves to the modern and power-
ful kernel smoothing theory where good estimators such as the local linear
and the multiplicative bias corrected estimators can attain good theoretical
properties with excellent practical performance.

The flexible method proposed by England and Verrall (2001) is quite
close to the above method of sieves. In this case the relation comes from
an application to regression, also described by Greman and Hwang (1982),
where a particular choice of sieve leads to the well-known smoothing splines
estimator for the univariate regression function. Again, it is known that the
maximum likelihood estimator is not consistent when a nonparametric (of
infinite dimensional parametric) regression function is assumed. A sieve for
this problem can be defined as the set of absolutely continuous functions r
satisfying

∫
|r′(x)|2 dx ≤ m, and the sieves estimator would be a first degree

polynomial smoothing spline (see for example Fan and Gijbels 1996 for a
description of smoothing regression splines). England and Verrall (2001) ex-
ploits the regression formulation of the reserving problem to apply smoothing
ideas. The approach of this paper becomes more complex than in Greman
and Hwang (1982), but the aim is still to provide estimators having the max-
imum likelihood properties in a nonparametric framework. The aproach of
England and Verrall (2001) is described here, in order to make the connection
with the classical method of sieves clear, and also to show thel connection
with the kernel methods suggested in this paper.

Consider the GLM formulation of the reserving problem described in
Section 2, and assume a more general framework where the error distribution
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could be Poisson (as considered here) but also gamma, inverse gamma etc.
Such a variety of distributions allows the GLMs to be used for bothe claim
claims and claim amounts triangles, with the Poisson model being suitable
for the counts triangle, and an overdispersion property often used for the
triangle of paid claims. Denoting by Cij the entries in any of these triangles
the above distribution can be characterized by the following assumption for
the variance:

V(Cij) = φmρ
ij,

with E[Cij] = mij. Values of ρ = 1, 2 and 3 give the Poisson, gamma and
inverse gamma, respectively. We focus on one of the GLM modesls for the
mean for the data in a triangle, given by:

log (mij) = c+ ai + bj. (11)

Here the use of the logarithmic transform makes the model linear but it also
imposes some positivity constraints on the data in the triangle. This para-
metric model is usually fitted in practice using standard GLM tools. Note
that if the dimension of the triangle is allowed to grow (and hence also the
number of parameters in (11) increases), it would again give rise to a non-
parametric maximum likelihood problem. Here the method of sieves would
suggest defining a sieve candidate which could lead to consistent solutions.
This was not the motivation of England and Verrall (2001), where a new
and flexible model is described which could generalize simpler models such
as that specified in equation (11) or others such as the so called Hoerl curve
given by

log (mij) = c+ ai + bi log(j) + γij. (12)

In this case, generalized additive models (GAMs) can be used of the following
form:

log (mij) = sθi(i) + sθj(log(j)) + sθj(j). (13)

In this, sθi and sθj are smoothers for the underwriting period i and the
development period j, with smoothing parameters θi, and θj, respectively.
The extremes values for the smoothing parameters i.e. zero and infinity,
would lead to either the classical chain ladder model in (11) or the Hoerl
curve in (12), respectively. Smoothing splines smoothers were considered for
sθi and sθj , thereby considering the underwriting and development periods
as continuous variables.

The relatively complex computational requirements of the GAMs in Eng-
land and Verrall (2001) may have deterred them from becoming popular in
reserving practice. A different approach, using GLMs was used by Björkwall,
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Hössjer, Ohlsson and Verrall (2011), where smoothing is introduced moti-
vated by what is often done inl practice in reserving by an actuary: the
smoothing of the development parameters using just ad hoc truncations of
the estimated values from the chain ladder method.

All these smoothing approaches in reserving have a relationship with the
general method of sieves, even though the nonparametric nature of the prob-
lem was not the original motivation. Also, none of these papers considered
data recorded more frequently (or continuously) and they do not therefore
address the nonparametric maximum likelihood problem.

Another application of smoothing ideas can be found in Verrall (1996),
which suggested a simple smoothing of the chain ladder underwriting period
parameters derived from the simple model in (11). The limited amount of
data to estimate these underwriting period effects can lead to very volatile
estimates, in which case the introdutione an appropriate level of smoothing
can more stable and reliable results. Also having a similar aim but consid-
ering also smoothing in the development period are Zehnwirth (1989) and
Verrall (1989), which use the Kalman filter.

The next section compares some of these approaches with the nonpara-
metric density approach using real insurance data. But before to considering
numerical results, where the peculiarities of the data might obscure some of
the weakness of the methods being compared, we conclude this section with
some remarks about the differences between previous approaches to introduce
smoothing in reserving from that proposal in this paper.

From the above description, it is clear that the development of smoothing
methods in reserving has focused on solving some of the drawbacks in tradi-
tional reserving practice such as the high volatility of results from classical
chain ladder methods. Reducing volatility is indeed one of the results of using
smoothing methods, but previous papers did not consider the implications
of the nonparametric reserving problem. England and Verrall (2001) pointed
out the continuous nature of the problem but it was simply noted that a
continuous model was being applied to a nonparametric problem. Indeed
even the continuous nature of the problem is recognised, all of the previ-
ous approaches look at the regression problem more than the actual density
problem. The regression view of the density problem is indeed quite useful
and has allowed many of the contributions to the density estimation problem
to be developed. However, such a perspective relies on the histogram and
therefore all the attempts to introduce smoothing methods would lead to
smoothed versions of the histogram. There are many papers in the literature
demonstrating that it is a poor and inefficient solution for the problem (see,
for example, Jones, 1989). The new formulation of the problem as a density
estimation problem therefore has wider implications and has not been con-
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sidered before in the actuarial literature. This wider perspective allows us to
develop modern and powerful nonparametric methods, which arel known to
provide excellent results in other fields. This, although the proposal in paper
may appear to be too sophisticated for stochastic reserving, we believe that
it is in fact simpler and more intuitive.

5 Illustration with real insurance data

5.1 The data and classical chain ladder

In this paper we consider an illustration of the reserving problem trough a
personal accident data set from a major insurer. These data were previously
used by Mart́ınez-Miranda, Nielsen and Verrall (2012) to estimate the reserve
using incurred counts and paid data through a micro-model on the underlying
individual data. In this study we restrict our attention to the incurred counts
triangle. As we discussed along the paper a proper analysis of the paid data
using the kernel density approach should require further work to deal properly
with the correlations in the individual payments series.

The data set consists of quarterly data arranged into an incremental run-
off triangle. Cells in the triangle correspond to number of reported counts
as were formulated above in ℵm′ = {Nij; (i, j)Im′}, with m′ = 76. Working
with such level of aggregation is not recommendable when applying classical
methods based on maximum likelihood (or quasi-likelihood) such as classi-
cal CLM. We remind to the reader our discussion in Section 4 where it was
pointed out that maximum likelihood tends to break down when the estima-
tion problem becomes actually a nonparametric problem. As we discussed
in this section there are some approaches in the literature to deal with this
issue without moving from the classical perspective. However the common
method used for many years in practice consisted of going to higher levels
of aggregation such as years so the dimension of the parametric space would
be reduced. Let denote by ℵm = {Nij; (i, j)Im} (with m = 19) the yearly
aggregation of the data which is plotted in Figure 1. The rows correspond
to the underwriting years and the columns correspond to the delay until re-
porting, also in years from the underwriting year. Then the observations
consist of a histogram with bins containing four quarters. Such a histogram
is the starting point of traditional methods such as the classical chain lad-
der. The projections using this method are calculated assuming the mean
model E[Nij] = αiβj (i, j = 1, . . . ,m and m = 19) and the parameters are
estimated using maximum likelihood under the Poisson distribution. The
resulting projections are shown in the bottom graph in Figure 1. We can see
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that these projections represent quite well the data histogram.

5.2 The continuous approach

Now we compare the classical chain ladder solution given above with the
continuous density approach suggested in this paper. Since the lower level
of aggregation in which the data are available are quarters we make use of
discrete approximations of our local linear (LL) and multiplicative bias cor-
rected (MBC) estimators. Such expressions are given in the Appendix A
and use as input data the quarterly counts triangle with dimension m′ = 76.
To derive both LL and MBC estimators we should start by estimating an
unstructured density in the observation set (in this case it is Im′). Such
estimators are formulated in (22) and (23) for the available data and require
a proper bandwidth choice. The crossvalidation method in (9) provides a

suitable choice for the bandwidths which becomes ĥcv = (10.2, 2.9) for the

LL estimator, and ĥcv = (10, 3.3) for MBC estimator. Note that it is requires
to oversmooth in the underwriting direction but undersmooth in the devel-
opment component. These unstructured estimators are the starting point
of our density estimator for forecasting purposes. They have been plotted
in the left panels of Figure 2. The estimated densities in the underwriting
and development directions (f1 and f2) are shown in Figure 3 and compared
with classical approaches such as classical chain ladder and two smoothing
methods suggested in the classical reserving framework. These methods were
described in Section 4 and we have focus in this application in two of them:
a sieves method to smoothing the chain ladder parameters estimated from
quarterly data (Verrall 1996 (check??)) and the following generalized addi-
tive model (GAM) suggested by England and Verrall 1991:

log (E[Nij]) = sθi(i) + sθj(j), (14)

with sθi and sθj being smoothing splines with crossvalidated smoothing pa-
rameter. The resulting components are shown in Figure 3 and compared
with the derived using the density approach and classical chain ladder.

5.3 Prediction of the outstanding claims

In reserving the interest is often to provide a summary of the predicted out-
standing claims more than individual estimates for cells in the input triangles
or even for individual claims. In fact the reserving practice focuses in de-
riving predictions for the overall total (or the reserve) or totals for each of
the future calendar year. From the classical CLM approach the outstanding
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numbers are obtained just by summing the predicted values for the claims in
the lower triangle. Thus the predicted reserves for the future calendar period
are derived just by summing up the diagonals in the lower triangle i.e.

D̂k =
m∑

i=2

N̂i,m+k−i+1 =
m∑

i=2

α̂iβ̂m+k−i+1 (15)

for k = 1, . . . ,m − 1. Thus the overall total will be R =
∑m−q

t=1 Dt. Under
the continuous approach these predictions are defined from the following
integrals:

D̂t = τ

∫ T

0

f̂1(x)f̂2(T − x+ t)dx, (16)

for calendar time t+T with t ∈ (0, T ). Here τ is the total exposure in I. The
predictions derived from the classical CLM and the continuous approach (LL
and MBC) are reported in Table 1. The results are compared also with the
classical chain ladder projections and the two smoothing methods in classical
reserving defined above.

We can see that the compared method are quite different so the natural
question is to perform a validation of the methods for the analyzed data
set. This is our aim in the next subsection but before moving there just to
point out that the performance of the methods should be asses for different
prediction goals. This is the best method to predict individual data (in this
case cells in the yearly triangle) could not be the best when the aim is to
predict an aggregation of the claims such as calendars or the overall total.
In fact, using the smoothing ideas in this paper to predict cells should be
required an undersmooth degree but the opposite will be required when the
aim is to predict a total. Therefore we expect that smoothing methods works
better to predict calendar years and total number of claims.

5.4 Validation

A common method used in reserving to validate the methods consists of
testing against the experience. This is done through the so called backtest.
The idea is quite simple: since we can only check the predictions with what
we have already observed, then we simply reduce the data to estimate and use
only the older data to predict the more recent data. Note that this process
uses the key assumption that the past is a good predictor of the future.

Thus from the available data we have cut off a number of calendar periods,
this is diagonals in the triangle, and keep the numbers to test later with the
predictions. By denoting by c the number of cut periods, the dimension of
the reduced triangle would bem−c and the observation set Ic = {(i, j); i, j =
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1, . . . ,m−c, i+j−1 ≤ m−c}. Now we can project from this reduced triangle
in the future which is given by the set Jc = {(i, j); i = 2, . . . ,m − c, j =
m− c− i+ 1, . . . ,m− c}. And finally we compare the projections with the

original kept data which spread out in J̃c = {(i, j) ∈ Jc; i+ j − 1 ≤ m}.
We use a number of different measures for the error depending on which is

the objective of prediction. Thus we are interested in validating the methods
to achieve three possible aims:

1. To predict individual cells i.e. number of claims which incurred in the
year i and will be reported with j − 1 years of delay, Nij.

2. To predict cash flows i.e. total number of claims which will be reported
in the calendar year t = i+ j − 1, this is Dt;c =

∑
i,j:i+j−1=t,(i,j)∈J̃c

Nij.

3. And to predict the overall total of claims in the futureRc =
∑

(i,j)∈J̃c
Nij.

Therefore the performance of the methods applied in previous section to
the data set should be evaluated in three different ways, depending on the
prediction goal defined above.

Cells: Rerrc1 =

∑
(i,j)∈J̃c

(N̂ij −Nij)
2

(i, j) ∈ J̃cN2
ij

(17)

Calendar: Rerrc2 =

∑c

t=1(D̂t;c −Dt;c)
2

∑c

t=1(Dt;c)2
(18)

Total: Rerrc3 =
|R̂c −Rc|

Rc

(19)

The results for the backtest projecting from the reduced triangles Jc with
c = 1, 2, 3, 4 and 5 years are reported in Table 2. The results from the test are
quite unstable and do not provide a clear picture of which method is working
better for the problem. In the next section we perform also a simulation
study to provide clearer conclusions.

6 Simulation study

To do... We will simulate monthly data.

7 Conclusions

To write...
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A Smoothing the multiplicative density from

aggregated data

As we have described above the reserving problem consists of estimating a
two-dimensional density with a support into a triangle. As was described
in Section 2.1 the density problem estimation can be viewed as a regression
problem on using binned data (Fan and Gijbels, 1996). Since data in insur-
ance are usually presented in an aggregated way such as quarters, years or in
the lower levels by months or even weeks this approach can be required by
the available data. In this practical situation it is useful to rewrite the meth-
ods we introduce in this paper using regression formulation on the available
aggregated data. The approach is then closely related to marginal regres-
sion method by Linton and Nielsen (1998). In this work the aim is simply
minimizing the distance from a multivariate regression function to two mul-
tiplicative components. Also the subsequent multiplicative bias correction
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we also suggest for the density problem can be reformulated in terms of the
nonparametric regression model by Linton and Nielsen (1994).

The regression formulation becomes more intuitive and at the moment
more popular in the current reserving practice as we discussed in Section
4. We think that this section will be a bridge to connect with the classical
reserving audience and at the same time a simple statistics exercise consisting
in adapting continuous methods to practical problems where the data are
given at some level of aggregation.

Let consider here the reserving problem to be solved from aggregated
data into a run-off triangle such as the counts triangle, ℵm. As we describe
in Section 2.1 The regression model for the underlying problem can be written
by

Nij = r(zij) + εij (20)

with zij = (xi, yj) the points in the grid, for (i, j) ∈ Im. In this case the
local linear estimator of the unstructured density resulting from solving the
problem (5), for any given point z0 = (x0, y0) can be derived from the close
minimization regression problem:

(
Ψ̂0

Ψ̂1

)
= argmin

∑

(i,j)∈Im

[
Nij − Ψ̂0 − Ψ̂11(x0 − xi)− Ψ̂12(y0 − yj)

]2
Kh(zij−z0)dz.

(21)

The solution Ψ̂0 gives an estimator for r(z0). By denoting as r̃(z0) such
estimate, the density f(z0) can be estimated by the discrete approximation

f̃(z0) = r̃(z0)/nΛ
2
m, (22)

with n =
∑

(i,j)∈Im
Nij and Λm the grid length. From arguments given in

Section 3.1 we can see that the estimator in (22) is equal to the local linear
density estimator in (5) as the grid-length Λm goes to 0. To derive the
corresponding discrete approximation form the structured (multiplicative)
density we carry out the the two-step method formulated in Section 3.3 from
the just derived estimator (22).

Similarly we can derive the second improved smoother using bias reduc-
tion techniques that was proposed in Section 3.4. Again from the above
regression view we can define the multiplicative bias correction estimator as
was introduced by Linton and Nielsen (1994) for nonparametric regression.
The unstructured MBC estimator at any point z0 is defined from the local
linear regression estimator r̃(z0) by:

r̃MBC(z0) = r̃(z0)h̃(z0) (23)
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where h̃ is the local linear regression estimator calculated from a problem
like (21) but using as responses the estimates {Nij/r̃(zij), (i, j) ∈ Im}. From
the MBC estimator r̃MBC the discrete unstructured MBC density is given
by f̃MBC(z0) = r̃MBC(z0)/nΛ

2
m. And finally we use the two-step method to

provide the discretized structured MBC estimator.
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Observed counts: Nij
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Figure 1: Insurance motor data: observed counts (run-off triangle) and clas-
sical chain ladder projections. The observed data consists of the number of
claims which incurred at year i and were reported with a delay of j− 1 years
(i, j = 1, . . . ,m, m = 19). The bottom histogram shows the projections
calculated using the chain ladder method.
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Figure 2: Forecasts for motor data using the continuous density approach.
Left panels show the unstructured local linear (LL) and multiplicative bias
corrected (MBC) estimators. The bandwidth parameters were chosen us-
ing crossvalidation that provided values (h1, h2) = (10.2, 2.9) for LL and
(h1, h2) = (10, 3.3) for MBC. The estimated densities have been evaluated
at years and the predicted number of claims have been plotted in the ver-
tical axis. Right panels show the derived projections using the structured
(multiplicative) estimators through the two step method in subsection 3.3.
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Figure 3: Estimated underwriting and development densities for motor data:
incurred counts triangle. Top panel shows the resulting underwriting density
(f1) from LL and MBC. Similarly for the development density (f2) in the
bottom panel. The LL and MBC estimates are compared with the classical
chain ladder parameters (CLM) and two smoothing related methods: a sieves
method on quarterly chain ladder parameters (sieves-CLM) and a the GAM
approach proposed by England and Verrall (1991).
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Future LL MBC CLM Sieve-CLM GAM
1 1647 1253 1425 1805 1239
2 187 161 181 200 151
3 68 60 69 69 55
4 32 26 30 32 28
5 21 17 20 21 17
6 14 12 15 14 11
7 9 7 9 9 8
8 5 4 5 5 5
9 3 2 3 3 3
10 2 2 2 2 2
11 1 1 1 1 1
12 1 1 1 1 1
13 1 0 1 1 1
14 1 0 1 1 0
15 1 0 0 1 0
16 0 0 0 0 0
17 0 0 0 0 0
18 0 0 0 0 0

Total 1992 1547 1763 2166 1524

Table 1: Predicted number of reported claims at each future calendar year.
The predictions labeled by LL and MBC have been calculated from the struc-
tured local linear and multiplicative bias corrected estimators, respectively,
with bandwidth estimated using crossvalidation. The column labeled as CLM
provides the classical chain ladder predictions. The fifth column shows the
results from a method of sieves on chain ladder estimates and the last column
the predictions using the GAM suggested by England and Verrall (2001).
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Objective c LL MBC Siev-CLM GAM
Cells 1 2.4585 0.2354 5.5215 0.6241

2 0.8593 1.2875 0.6553 0.8603
3 0.8490 1.2782 1.0107 0.9895
4 2.8465 0.9192 2.9988 0.2609
5 0.6219 1.2662 0.5442 2.0258

Calendar 1 0.3114 0.0572 4.7132 0.3533
2 0.8602 1.3575 0.6211 0.9406
3 0.8552 1.1465 1.0001 1.0251
4 2.7530 0.9022 2.8625 0.2215
5 0.1441 1.1828 0.0989 1.7305

Total 1 0.3114 0.0572 4.7132 0.3533
2 0.8628 1.4226 0.5867 0.9710
3 0.8563 1.1816 1.0095 1.0572
4 2.3621 0.8920 2.4244 0.0818
5 0.3264 1.2409 0.1470 1.9921

Table 2: Back-testing on real insurance motor data. The relative prediction
error has been evaluated when the aim is either to predict individual cells
in the yearly triangle, total quantity for future calendar years (diagonals)
or the overall total. The columns labeled as LL and MBC show the reduc-
tion/increment in the prediction error against the classical CLM considering
the structured local linear and multiplicative bias correction estimated den-
sities, respectively. The exact expression of these relative measures is given
in (17), (18) and (19). The numbers in the table corresponds to the ratio of
the measures for each method and the obtained for CLM. Thus quantities
lower than 1 indicate an improvement on CLM.
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