117 research outputs found
First demonstration of real-time 100 Gbit/s 3-Level duobinary transmission for optical interconnects
The Influence of Network Topology on Sound Propagation in Granular Materials
Granular materials, whose features range from the particle scale to the
force-chain scale to the bulk scale, are usually modeled as either particulate
or continuum materials. In contrast with either of these approaches, network
representations are natural for the simultaneous examination of microscopic,
mesoscopic, and macroscopic features. In this paper, we treat granular
materials as spatially-embedded networks in which the nodes (particles) are
connected by weighted edges obtained from contact forces. We test a variety of
network measures for their utility in helping to describe sound propagation in
granular networks and find that network diagnostics can be used to probe
particle-, curve-, domain-, and system-scale structures in granular media. In
particular, diagnostics of meso-scale network structure are reproducible across
experiments, are correlated with sound propagation in this medium, and can be
used to identify potentially interesting size scales. We also demonstrate that
the sensitivity of network diagnostics depends on the phase of sound
propagation. In the injection phase, the signal propagates systemically, as
indicated by correlations with the network diagnostic of global efficiency. In
the scattering phase, however, the signal is better predicted by meso-scale
community structure, suggesting that the acoustic signal scatters over local
geographic neighborhoods. Collectively, our results demonstrate how the force
network of a granular system is imprinted on transmitted waves.Comment: 19 pages, 9 figures, and 3 table
DAC-less and DSP-free PAM-4 transmitter at 112 Gb/s with two parallel GeSi electro-absorption modulators
Figure S5. The MAP of the reprogramming process in the WT model. The MAP (white curve) starting from the ME differentiated state (the blue point) to the pluripotent state (the green point) is different from that of differentiation process (Fig. 3A). The green dotted line is the ODE trajectory to compare with the MAP. (PDF 3338 kb
100 Gbit/s serial transmission using a silicon-organic hybrid (SOH) modulator and a duobinary driver IC
100 Gbit/s three-level (50 Gbit/s 00K) signals are generated using a silicon-organic hybrid modulator and a BiCMOS duobinary driver IC at a BER of 8.5x10(-5)(<10(-12)). We demonstrate dispersion-compensated transmission over 5 km
A Critical Perspective on Moral Neuroscience
In this paper, we highlight several historical developments in the neuroscience of ethics as well as
recent advances that forecast the experimental research to come. We argue, in particular, that
our understanding of the moral brain will benefit from the further use of a formal, mathematical
approach to the construction and testing of alternative theories, such as that found in the field of
neuroeconomics. The use of economic modeling to understand the psychological processes
underlying distributional preferences and charitable giving is reviewed to illustrate this potential.
We also consider some obstacles to such an approach, notably the challenge of capturing
substantive moral values within a mathematical model
- …