91 research outputs found

    Optimization of primary hepatocyte isolation for the pharmacological characterization of metabotropic glutamate receptor (mGluR) s ubtype 5: A study on Reduction

    Get PDF
    To minimize the number of animals used during experiments, it is important to choose the suitable enzyme according to the final goal. In our work, we demonstrated the superiority of collagenase IV in the maintenance of functional transmembrane receptor, thus the pharmacological activity, in isolated rat hepatocytes

    A low-cost scalable 3D-printed sample-holder for agitation-based decellularization of biological tissues

    Get PDF
    Decellularized extracellular matrix is one of the most promising biological scaffold supporting in vitro tissue growth and in vivo tissue regeneration in both preclinical research and clinical practice. In case of thick tissues or even organs, conventional static decellularization methods based on chemical or enzymatic treatments are not effective in removing the native cellular material without affecting the extracellular matrix. To overcome this limitation, dynamic decellularization methods, mostly based on perfusion and agitation, have been proposed. In this study, we developed a low-cost scalable 3D-printed sample-holder for agitation-based decellularization purposes, designed for treating multiple specimens simultaneously and for improving efficiency, homogeneity and reproducibility of the decellularization treatment with respect to conventional agitation-based approaches. In detail, the proposed sample-holder is able to house up to four specimens and, immersed in the decellularizing solution within a beaker placed on a magnetic stirrer, to expose them to convective flow, enhancing the solution transport through the specimens while protecting them. Computational fluid dynamics analyses were performed to investigate the fluid phenomena establishing within the beaker and to support the sample-holder design. Exploratory biological tests performed on human skin specimens demonstrated that the sample-holder reduces process duration and increases treatment homogeneity and reproducibility

    Tyrosine phosphorylation modulates peroxiredoxin-2 activity in normal and diseased red cells

    Get PDF
    Peroxiredoxin-2 (Prx2) is the third most abundant cytoplasmic protein in red blood cells. Prx2 belongs to a well-known family of antioxidants, the peroxiredoxins (Prxs), that are widely expressed in mammalian cells. Prx2 is a typical, homodimeric, 2-Cys Prx that uses two cysteine residues to accomplish the task of detoxifying a vast range of organic peroxides, H2O2, and peroxynitrite. Although progress has been made on functional characterization of Prx2, much still remains to be investigated on Prx2 post-translational changes. Here, we first show that Prx2 is Tyrosine (Tyr) phosphorylated by Syk in red cells exposed to oxidation induced by diamide. We identified Tyr-193 in both recombinant Prx2 and native Prx2 from red cells as a specific target of Syk. Bioinformatic analysis suggests that phosphorylation of Tyr-193 allows Prx2 conformational change that is more favorable for its peroxidase activity. Indeed, Syk-induced Tyr phosphorylation of Prx2 enhances in vitro Prx2 activity, but also contributes to Prx2 translocation to the membrane of red cells exposed to diamide. The biologic importance of Tyr-193 phospho-Prx2 is further supported by data on red cells from a mouse model of humanized sickle cell disease (SCD). SCD is globally distributed, hereditary red cell disorder, characterized by severe red cell oxidation due to the pathologic sickle hemoglobin. SCD red cells show Tyr-phosphorylated Prx2 bound to the membrane and increased Prx2 activity when compared to healthy erythrocytes. Collectively, our data highlight the novel link between redox related signaling and Prx2 function in normal and diseased red cells

    Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer

    Get PDF
    M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-β enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations

    COVID-19 atypical Parsonage-Turner syndrome: a case report

    Get PDF
    Background Neurological manifestations of Sars-CoV-2 infection have been described since March 2020 and include both central and peripheral nervous system manifestations. Neurological symptoms, such as headache or persistent loss of smell and taste, have also been documented in COVID-19 long-haulers. Moreover, long lasting fatigue, mild cognitive impairment and sleep disorders appear to be frequent long term neurological manifestations after hospitalization due to COVID-19. Less is known in relation to peripheral nerve injury related to Sars-CoV-2 infection. Case presentation We report the case of a 47-year-old female presenting with a unilateral chest pain radiating to the left arm lasting for more than two months after recovery from Sars-CoV-2 infection. After referral to our post-acute outpatient service for COVID-19 long haulers, she was diagnosed with a unilateral, atypical, pure sensory brachial plexus neuritis potentially related to COVID-19, which occurred during the acute phase of a mild Sars-CoV-2 infection and persisted for months after resolution of the infection. Conclusions We presented a case of atypical Parsonage-Turner syndrome potentially triggered by Sars-CoV-2 infection, with symptoms and repercussion lasting after viral clearance. A direct involvement of the virus remains uncertain, and the physiopathology is unclear. The treatment of COVID-19 and its long-term consequences represents a relatively new challenge for clinicians and health care providers. A multidisciplinary approach to following-up COVID-19 survivors is strongly advised

    Nature

    Get PDF
    The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different basolateral amygdala (BLA) projections are potentiated following reward or punishment learning1–7. However, we do not yet understand how valence specific information is routed to the BLA neurons with the appropriate downstream projections. Nor do we understand how to reconcile the subsecond timescales of synaptic plasticity8–11 with the longer timescales separating the predictive cues from their outcomes. Here, we demonstrate that neurotensin (NT) neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, while PVT-BLA projection-specific Nt gene knockout augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nt gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference to active behavioral strategies to reward and punishment predictive cues. Taken together, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviorally-relevant timescales

    Operationalizing mild cognitive impairment criteria in small vessel disease: The VMCI-Tuscany Study

    Get PDF
    Introduction Mild cognitive impairment (MCI) prodromic of vascular dementia is expected to have a multidomain profile. Methods In a sample of cerebral small vessel disease (SVD) patients, we assessed MCI subtypes distributions according to different operationalization of Winblad criteria and compared the neuroimaging features of single versus multidomain MCI. We applied three MCI diagnostic scenarios in which the cutoffs for objective impairment and the number of considered neuropsychological tests varied. Results Passing from a liberal to more conservative diagnostic scenarios, of 153 patients, 5% were no longer classified as MCI, amnestic multidomain frequency decreased, and nonamnestic single domain increased. Considering neuroimaging features, severe medial temporal lobe atrophy was more frequent in multidomain compared with single domain. Discussion Operationalizing MCI criteria changes the relative frequency of MCI subtypes. Nonamnestic single domain MCI may be a previously nonrecognized type of MCI associated with SVD

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link
    • …
    corecore