241 research outputs found

    Mechanisms Of Inhibition Of Cigarette Smoke Genotoxicity And Carcinogenicity

    Get PDF
    Epidemiological studies have demonstrated that it is possible to prevent lung cancer and other smoke-related diseases by avoiding exposures to tobacco smoke. A complementary strategy is chemoprevention, which is based on the administration of dietary and pharmacological agents, which is addressed to (a) addicted active smokers, who are unable to quit smoking, (b) ex-smokers, who are still at risk for several years, and (c) involuntary smokers, including passively exposed individuals as well as transplacentally exposed individuals. The biological effects of cigarette smoke (CS) as a complex mixture, either mainstream (MCS) or sidestream (SCS) or environmental (ECS), have been poorly explored. We showed that MCS and ECS induce a broad variety of alterations of intermediate biomarkers in animal models, including adducts to nuclear DNA and mtDNA, oxidatively generated DNA damage, proliferation, apoptosis, alterations of oncogenes and tumor suppressor genes, multigene expression, microRNA and proteome profiles as well as cytogenetic damage in the respiratory tract, bone marrow and peripheral blood. CS-altered end-points were variously modulated by chemopreventive agents of natural or pharmacological origin, such as N-acetyl-L-cysteine (NAC), 1,2-dithiole-3-thione, oltipraz, 5,6-benzoflavone, phenethyl isothiocyanate (PEITC), indole-3-carbinol, sulindac, and budesonide. Combinations of agents were also assayed. Since it is difficult to assess the efficacy of chemopreventives in clinical trials, it is essential to understand the mechanisms by which certain agents are expected to prevent smoke-related cancer. Preclinical studies are also useful to demonstrate the potential efficacy of chemopreventive agents. Unfortunately, until recently a suitable animal model for evaluating CS carcinogenicity and its chemoprevention was not available. We demonstrated that ECS and especially MCS become potently carcinogenic when exposure of mice starts at birth, as shown by very short latency times, high incidence and multiplicity of benign lung tumors, early occurrence of malignant lung tumors, and lesions in other organs. This mouse model was successfully used to demonstrate the ability of NAC, PEITC, and budesonide to prevent smoke-induced lung cancer, according to protocols mimicking the situation either in current smokers or in ex-smokers. Other dietary or pharmacological agents, including curcumin, anthocyanins, myo-inositol, SAHA, bexarotene and pioglitazone, are now under study. NAC was even successful to prevent lung cancer induced by MCS after birth when it was administered during the prenatal life. Therefore, it is now possible to investigate in vivo not only alterations of intermediate biomarkers but also the modulation of CS carcinogenesis by chemopreventive agents working with different mechanisms

    Release of MicroRNAs into body fluids from ten organs of mice exposed to cigarette smoke

    Get PDF
    Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies

    The Lantern Vol. 5, No. 3, May 1937

    Get PDF
    • Dedication • Dr. McClure: An Ursinus Man • Roar, O Wind! • To the Ladies! • The Futility of Dying • The Symbolism of the British Crown • Oh! • It Might Have Been • Treat Yourself? • Three Writers • Hawaii in June • On Being a Twin • Black Magic • Triangle • Who Longs? • A Son Passes • Sing an Old-Fashioned Song • Questioning • An Argument About a Fish • That Morning Eye-Opener • Scoop for the Sun • The Dead Do Not Die Once • Give Us Timehttps://digitalcommons.ursinus.edu/lantern/1010/thumbnail.jp

    Predictive Value Tools as an Aid in Chemopreventive Agent Development

    Get PDF
    Over 25 years, the National Cancer Institute’s Division of Cancer Prevention has entered some 800 agents into a chemopreventive agent testing program. Two critical steps involve: 1) in vitro/in vivo morphologic assays and 2) animal tumor assays (incidence/multiplicity reduction). We sought to determine how accurately the earlier-stage (morphologic) assays predict efficacy in the later-stage (animal tumor) assays

    Recommendations for a national agenda to substantially reduce cervical cancer

    Get PDF
    PURPOSE: Prophylactic human papillomavirus (HPV) vaccines and new HPV screening tests, combined with traditional Pap test screening, provide an unprecedented opportunity to greatly reduce cervical cancer in the USA. Despite these advances, thousands of women continue to be diagnosed with and die of this highly preventable disease each year. This paper describes the initiatives and recommendations of national cervical cancer experts toward preventing and possibly eliminating this disease. METHODS: In May 2011, Cervical Cancer-Free America, a national initiative, convened a cervical cancer summit in Washington, DC. Over 120 experts from the public and private sector met to develop a national agenda for reducing cervical cancer morbidity and mortality in the USA. RESULTS: Summit participants evaluated four broad challenges to reducing cervical cancer: (1) low use of HPV vaccines, (2) low use of cervical cancer screening, (3) screening errors, and (4) lack of continuity of care for women diagnosed with cervical cancer. The summit offered 12 concrete recommendations to guide future national and local efforts toward this goal. CONCLUSIONS: Cervical cancer incidence and mortality can be greatly reduced by better deploying existing methods and systems. The challenge lies in ensuring that the array of available prevention options are accessible and utilized by all age-appropriate women-particularly minority and underserved women who are disproportionately affected by this disease. The consensus was that cervical cancer can be greatly reduced and that prevention efforts can lead the way towards a dramatic reduction in this preventable disease in our country

    Multitargeted Low-Dose GLAD Combination Chemoprevention: A Novel and Promising Approach to Combat Colon Carcinogenesis

    Get PDF
    AbstractPreclinical studies have shown that gefitinib, licofelone, atorvastatin, and α-difluoromethylornithine (GLAD) are promising colon cancer chemopreventive agents. Because low-dose combination regimens can offer potential additive or synergistic effects without toxicity, GLAD combination was tested for toxicity and chemopreventive efficacy for suppression of intestinal tumorigenesis in adenomatous polyposis coli (APC)Min/+ mice. Six-week-old wild-type and APCMin/+ mice were fed modified American Institute of Nutrition 76A diets with or without GLAD (25 + 50 + 50 + 500 ppm) for 14 weeks. Dietary GLAD caused no signs of toxicity based on organ pathology and liver enzyme profiles. GLAD feeding strongly inhibited (80–83%, P < .0001) total intestinal tumor multiplicity and size in APCMin/+ mice (means ± SEM tumors for control vs GLAD were 67.1 ± 5.4 vs 11.3 ± 1.1 in males and 72.3 ± 8.9 vs 14.5 ± 2.8 in females). Mice fed GLAD had >95% fewer polyps with sizes of >2 mm compared with control mice and showed 75% and 85% inhibition of colonic tumors in males and females, respectively. Molecular analyses of polyps suggested that GLAD exerts efficacy by inhibiting cell proliferation, inducing apoptosis, decreasing β-catenin and caveolin-1 levels, increasing caspase-3 cleavage and p21, and modulating expression profile of inflammatory cytokines. These observations demonstrate that GLAD, a novel cocktail of chemopreventive agents at very low doses, suppresses intestinal tumorigenesis in APCMin/+ mice with no toxicity. This novel strategy to prevent colorectal cancer is an important step in developing agents with high efficacy without unwanted side effects
    • …
    corecore