INCON / 10° ICMAA, Guarujà, Brazil, September 26-29, 2010

MECHANISMS OF INHIBITION OF CIGARETTE SMOKE GENOTOXICITY AND CARCINOGENICITY

R. Balansky^{1,2}, F. D'Agostini², A. Izzotti², P. Kalpakam³, V.E. Steele⁴, S. De Flora²

- ^L National Center of Oncology, Sofia, Bulgaria
- ² Department of Health Sciences, University of Genoa, Italy
- ³ National Institute of Nutrition, Hyderabad, India
- ⁴ National Cancer Institute, Rockville, MD, USA

CIGARETTE SMOKING AND CANCER

Evidence for causal association

Lung (90%)

Urinary tract (bladder, ureter, and renal pelvis) Oral cavity Nasal cavity and paranasal sinuses Naso-, oro-, and hypopharynx Larynx Oesophagus Stomach Liver Pancreas Uterine cervix Bone marrow (myeloid leukemia)

Inconclusive evidence for association

Colon-rectum

Evidence for lack of association

Breast Endometrium Prostate ?

IARC Vol. 83, 2004 Tobacco Smoke and Involuntary Smoking

DEATHS ATTRIBUTABLE TO TOBACCO SMOKE

TOTAL TUMORS LUNG TUMORS AERODIGESTIVE TRACT TUMORS CARDIOVASCULAR DISEASES COPD 30% 85% 50–70% synergism with alcohol 30% synergism with other risk factors 75%

EU ~ 500,000 deaths / year USA ~ 500,000 deaths / year

TOBACCO SMOKE AS A COMPLEX MIXTURE

Balansky RM, Blagoeva PM, Mircheva ZI. Investigation of the mutagenic activity of tobacco smoke. Mutat. Res. 1987 May;188(1):13-9.

Balansky RM, Blagoeva PM, Mircheva ZI. The mutagenic and clastogenic activity of tobacco smoke. Mutat. Res. 1988 Jul;208(3-4):237-41.

Balansky RM, Blagoeva PM. Tobacco smoke-induced clastogenicity in mouse fetuses and in newborn mice. Mutat. Res. 1989 May;223(1):1-6.

Balansky RM, Blagoeva PM, Mircheva ZI. Modulation of genotoxic activity of tobacco smoke. IARC Sci. Publ. 1991;(105):535-7.

TIME COURSE FORMATION OF DNA ADDUCTS IN RATS EXPOSED TO CIGARETTE SMOKE

A. Izzotti et al., Carcinogenesis 20, 1499-1505, 1999

MODULATION OF DNA ADDUCTS BY DIETARY AGENTS IN THE LUNG OF SMOKE-EXPOSED RATS

A. Izzotti et al., Cancer Res., 61, 2472-9, 2001

ADDUCTS TO LUNG DNA IN SMOKE-EXPOSED RATS

R. Balansky et al., Cancer Res. 56, 1642-1647, 1996

GENOMIC AND TRANSCRIPTIONAL ALTERATIONS IN MOUSE FETUS LIVER

A. Izzotti et al., FASEB J. 17, 126-129, 2003

INTERPLAY BETWEEN HISTOPATHOLOGICAL ALTERATIONS, **CIGARETTE SMOKE AND CANCER CHEMOPREVENTIVE AGENTS IN DEFINING microRNA PROFILES IN MOUSE LUNG**

A. Izzotti et al., Mutat. Res., in press

PCA component 1

FREQUENCY OF MICRONUCLEI (%) IN SMOKE-EXPOSED MICE

R. Balansky et al., Carcinogenesis 20, 1491-1497, 1999

Bone marrow (PCE)

FREQUENCY OF MICRONUCLEI (%) IN SMOKE-EXPOSED MICE

R. Balansky et al., Carcinogenesis 20, 1491-1497, 1999

Peripheral blood (NCE)

FREQUENCY OF MICRONUCLEI (%) IN SMOKE-EXPOSED MICE

R. Balansky et al., Carcinogenesis 20, 1491-1497, 1999

Respiratory tract (PAM)

LUNG TUMOR YIELD IN A/J MICE EXPOSED TO CIGARETTE SMOKE (ECS)

F. D'Agostini et al., Int. J. Oncol. 18, 607-615, 2001

EFFECTS OF CIGARETTE SMOKE IN MUTANT MICE

S. De Flora *et al.* Molecular alterations and lung tumors in *P53* mutant mice exposed to cigarette smoke. *Cancer Res.*63, 793–800, 2003

A. Izzotti *et al.* Gene expression in the lung of *P53* mutant mice exposed to cigarette smoke. *Cancer Res.* 64, 8566–72, 2004

F. D'Agostini *et al.* Early loss of *Fhit* in the respiratory tract of rodents exposed to environmental cigarette smoke. *Cancer Res.* 66, 3936–41, 2006

S. De Flora *et al.* Molecular and cytogenetical alterations induced by environmental cigarette smoke in mice heterozygous for *Fhit. Cancer Res.* 67, 1001–6, 2007

INCREASED SUSCEPTIBILITY TO CARCINOGENS AT BIRTH: MECHANISMS

Induction of oxidative DNA damage and formation of bulky DNA adducts

Overexpression of multiple genes

Increased proliferative rate in neonatal organs

Alterations of xenobiotic metabolism

Lower efficiency of certain DNA repair mechanisms

Involvement of stem cells?

INDUCTION OF LUNG TUMORS BY CIGARETTE SMOKE IN MICE EXPOSED EARLY IN LIFE

Time (months)

 ★ Spontaneous deaths
▲ Including one malignant tumor

R. Balansky et al., Carcinogenesis 28, 2236–43, 2007

HISTOPATHOLOGICAL ALTERATIONS IN THE LUNG OF MCS-EXPOSED MICE

: Posted 24 Nov 2010

038/npre.2010.5328.

Hyperplasia of alveolar epithelium

Papillary hyperplasia of bronchial epithelium

Adenoma

Carcinoma in situ

Small cell carcinoma

Tumor containing adenocarcinomatous and small cell areas

Adenosquamous carcinoma

Low differentiated carcinoma

INCIDENCE OF LUNG TUMORS IN MICE EXPOSED TO CIGARETTE SMOKE

Mouse strain	Exposure period	End of exp.	Sham	Cigarette Smoke		Dof
			Adenomas	Adenomas*	Malignant t.	Kei.
Swiss H	0-4 mo.	7 mo.	0/36	15/38 (39.5%)	7/38 (18.4%)	Balansky et al., 2007
Swiss H	0-4 mo.	7 mo.	1/52 (1.9%)	16/55 (29.1%)	6/55 (10.9%)	Balansky et al., 2009
Swiss H	0-4 mo.	7 mo.	0/34	24/69 (34.8%)	9/69 (13.0%)	Unpublished
Swiss H	0-4 mo.	8 mo.	3/64 (4.7%)	16/111(14.4%)	2/111 (10.8%)	Unpublished
Swiss H	0-2 mo.	8 mo.	0/36	9/32 (28.1%)	3/32 (9.4%)	Unpublished
Swiss H	3-7 mo.	11 mo.	0/30	2/60 (3.3%)	0/60	Unpublished
Swiss ICR	0-4 mo.	7 mo.	2/57 (3.8%)	25/82 (30.5%)	0/82	Unpublished
DBA/2	0-4 mo.	8 mo.	0/18	3/16 (18.8%)	0/16	Unpublished
C57BL	0-4 mo.	8 mo.	0/19	1/22 (4.5%)	0/22	Unpublished
C57BL	3-7 mo.	11 mo.	0/30	0/27	0/27	Unpublished

CARCINOGENICITY OF MAINSTREAM CIGARETTE SMOKE IN STRAIN H MICE

CHEMOPREVENTION OF CIGARETTE SMOKE-INDUCED TUMORS

Experimental design

CHEMOPREVENTION OF CIGARETTE SMOKE-INDUCED TUMORS

R. Balansky et al., Int. J. Cancer 126, 1046-54, 2010

PRENATAL *N*-ACETYLCYSTEINE (NAC) PREVENTS CIGARETTE SMOKE-INDUCED LUNG TUMORS IN NEONATAL MICE

R. Balansky et al., Carcinogenesis 30, 1398–1401, 2009 Nov 24 Posted **Total lung tumors Total lung tumors** Sham MCS 5328. NAC-MCS 2010. Microadenomas **Microadenomas** Sham npre. MCS NAC-MCS Sham Adenomas Adenomas MCS NAC-MCS Sham Bronchoalveolar carcinomas Bronchoalveolar carcinomas MCS NAC-MCS 10 50 0.5 0 20 30 40 60 0 1.0 1.5 2.0 2.5 3.5 3.0 Multiplicity (mean ± SE) **Incidence (%)**

PRENATAL N-ACETYLCYSTEINE (NAC) PREVENTS CIGARETTE SMOKE-INDUCED HISTHOPATOLOGICAL ALTERATIONS IN NEONATAL MICE

R. Balansky et al., Carcinogenesis 30, 1398–1401, 2009

2010

PRENATAL ASCORBIC ACID (AsA) PREVENTS CIGARETTE SMOKE-INDUCED LUNG TUMORS IN NEONATAL MICE

CHEMOPREVENTION OF CIGARETTE SMOKE-INDUCED LUNG ADENOMAS BY NATURAL PRODUCTS

CHEMOPREVENTION OF SMOKE-RELATED ALTERATIONS OF microRNAs AND LUNG TUMORS

