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Abstract

Background: Over 25 years, the National Cancer Institute’s Division of Cancer Prevention has entered some 800 agents into 
a chemopreventive agent testing program. Two critical steps involve: 1) in vitro/in vivo morphologic assays and 2) animal 
tumor assays (incidence/multiplicity reduction). We sought to determine how accurately the earlier-stage (morphologic) 
assays predict efficacy in the later-stage (animal tumor) assays.

Methods: Focusing on 210 agents tested in both morphologic and animal tumor assays, we carried out statistical modeling 
of how well the six most commonly used morphologic assays predicted drug efficacy in animal tumor assays. Using 
multimodel inference, three statistical models were generated to evaluate the ability of these six morphologic assays to 
predict tumor outcomes in three different sets of animal tumor assays: 1) all tumor types, 2) mammary cancer only, and 
3) colon cancer only. Using this statistical modeling approach, each morphologic assay was assigned a value reflecting how 
strongly it predicted outcomes in each of the three different sets of animal tumor assays.

Results: We demonstrated differences in the predictive value of specific morphologic assays for positive animal tumor assay 
results. Some of the morphologic assays were strongly predictive of meaningful positive efficacy outcomes in animal tumor 
assays representing specific cancer types, particularly the aberrant crypt focus (ACF) assay for colon cancer. Moreover, less 
strongly predictive assays can be combined and sequenced, resulting in enhanced composite predictive ability.

Conclusions: Predictive models such as these could be used to guide selection of preventive agents as well as morphologic 
and animal tumor assays, thereby improving the efficiency of our approach to chemopreventive agent development.

For over 25 years, the National Cancer Institute’s (NCI’s) Division 
of Cancer Prevention (DCP) has followed a conventional drug 
development process similar to one used for treatment. This 
program is the only large-scale endeavor focusing on the 
development of agents to prevent or reduce the risk of cancer. 
Approximately 800 promising agents have been brought into 
the program through a variety of venues. Of these, 750 candi-
date agents were tested first in mechanistic and/or morpho-
logic (in vitro and in vivo) assays (Figure 1). The latter were then 

considered for preclinical in vivo testing in animal tumor assays 
and ultimate advancement to successive phases of clinical tri-
als. The results reported here arise from a project designed to 
investigate whether DCP’s cancer prevention drug develop-
ment process is achieving its ultimate goal of enhancing public 
health by preventing cancer or substantially decreasing its risk 
in a resource-efficient manner. In the current evaluation of two 
of the early stages of agent testing—morphologic and animal 
tumor assays—we updated a similar 1996 analysis (1), using a 
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more quantitative approach. Our approach is timely, given the 
current climate of increasingly constrained research resources.

Methods

General Approach

We tracked outcomes at each stage of testing (morphologic assays, 
animal tumor assays, clinical trial phases, including investiga-
tional new drug [IND]–enabling safety trials), relating successes 
and failures to those of the preceding stage, simulating a “screen-
ing” approach. Definitions of positive and negative outcomes were 
formulated for each stage of testing, with success at a given stage 
based on composite outcomes of multiple assays. “Positivity” at 
an earlier stage in the screening process generally favored pro-
gression to the next stage (morphologic to in vivo, for example) 
(Figure 1), conditional on resource availability and other factors 
related to infrastructure. “Negativity” at the morphologic assay 
stage generally did not support testing an agent in the later, ani-
mal tumor assay stage. However, the data collected were diverse in 
morphologic assay outcomes, encouraging us to estimate positive 
and negative predictive values for the earlier assay stage relative 
to the later stage using statistical modeling. In the current paper, 
this “decision-gate” approach is applied to the morphologic-to-in 
vivo transition. The critical decision is whether to progress from 
the earlier to the next, more resource-intense, stage.

For the current project, predictive models were generated 
based on quantitative measures of morphologic outcomes for 
individual assays and for composites of multiple assay types. 
The actual outcomes at each stage are not strictly quantita-
tive, however, and therefore are transformed into a quantitative 
value. Net success at the morphologic screening assay stage was 
interpreted as general “positivity.”

To investigate whether efficacy in commonly used morpho-
logic assays predicts cancer prevention efficacy in our animal 
tumor assays, a statistical modeling approach was developed to 
evaluate the relationship between quantitative results on each 
side of the morphologic-to-animal tumor assay transition. The 
implementation of such statistical models as a tool in evalua-
tion of the earlier-stage assays allows the generation of “predic-
tive values” that can guide our decisions whether to proceed to 
the next stage at each transition.

Morphologic and Animal Tumor Assays

The results from DCP-sponsored studies, maintained in rela-
tional databases, indicated that 617 agents had been evalu-
ated in morphologic assays and/or tumor efficacy assays in 
animals. Among these, the 210 agents tested in both assay 
types were used in this analysis (Figure 2A). These 210 agents 
are distributed among seven functional/biological categories 
(Figure 2B).

Figure 1.  Decision-gate agent selection and testing process. Although ideas for chemopreventive agents come from a variety of sources, most agents are suggested 

from preclinical data presented in peer-reviewed published articles. 1) Prevention efficacy may be suggested by epidemiologic data on cancer incidence from popula-

tion studies of widely used approved drugs for nonmalignant diseases, suggesting the possibility of “repurposing” drugs to cancer prevention. 2) Nutritional compo-

nents are also suggested as having preventive properties based on observational data associating specific diets or use of individual nutrients with cancer incidence. 

3) Retrospective analyses of secondary cancer endpoints or even nonprospectively collected cancer data from trials of noncancer drugs also offer hypotheses regarding 

cancer prevention effects. 4) Prevention of second primary cancers within treatment trials of existing cancers, breast cancer being the most obvious example, also has 

supported the testing of treatment agents for prevention. IND = investigational new drug.
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The six selected morphologic assays span several tissue types 
and follow various criteria for determining efficacy (Table 1) (2). 
Of note, the aberrant crypt focus (ACF) assay does not assess 
tumor prevention and is considered a morphological assay 
despite taking place in vivo. Data generated from these assays 
were classified into ordered categories of efficacy (Table 2). The 
best result for each agent in each assay was used in fitting the 
statistical model. This approach was used in order to optimize 
the chance to retain a true positive signal and avoid false nega-
tive results. Although this was done at the expense of possible 
false positive signals, this approach is a first pass at estimating 
agent efficacy. In general, a false negative (discarding a useful 
agent) is considered less desirable than a false positive in early 
drug screening phases.

Statistical Methods

The most commonly used animal tumor assays are the car-
cinogen-induced assays, which represent distinct tumor sites: 
azoxymethane (AOM) rat colon, methyl nitrosourea (MNU) rat 
mammary, hydroxyl butyl(butyl) nitrosamine (OH-BBN) rat blad-
der, benzo[α]pyrene (B[a]P) mouse lung, and ultraviolet (UV) 
mouse skin (3). As with the morphologic assays (Table 2), tumor 
results (incidence, multiplicity) were classified into ordered cat-
egories. The best result for each agent and site-specific tumor 
model was selected, again in order to err on the side of positivity. 
The current analysis addressed three classes of animal tumor 
assays: 1) the general tumor model using all the data from all 
animal assays, 2)  the colon, and 3)  the mammary assays; the 
latter two were restricted to data for the indicated tumor sites.

In constructing models to predict outcomes of animal tumor 
assays from morphologic assay results, separate analyses were 
performed for each class of animal tumor assay (general, colon, 
mammary). Both animal tumor and morphologic assays gener-
ated ordinal data (values of 0, 1, 2, 3) (Table 2), so ordinal logistic 
regression was applied. Under this model, if Y is the potential 
outcome of the animal tumor assay and XACF, XA427, XHFE, XJB6, 
XMMOC, and XRTE are the observed outcomes of the morphologic 
assays, the logarithm of the odds that Y will be at most j, where 
j ranges from 0 to 2, is aj + bACFXACF + bA427XA427 + bHFEXHFE + bJB6XJB6 + 
bMMOCXMMOC + bRTEXRTE. Note that the slope coefficients (the bs) do 
not change with j; only the intercept a changes.

When considering predictive models, we allowed for options 
in which certain morphologic assays would not be used, which 
is equivalent to setting their slope coefficients to 0.  The set of 
all possible such options consists of 63 models (Supplementary 
Table 1, available online). Because a relatively small number of 
outcomes of animal tumor assays had associated results from all 
six morphologic assays, multiple imputation was performed to 
generate multiple complete datasets having close concordance 
with the observed data (4). For each of the 100 imputed datasets, 
each of the 63 ordinal logistic regression models was fitted. The 
SAS procedure MIANALYZE was applied to every model to obtain 
combined estimates (with standard errors) of the coefficients 
over the 100 datasets. The 63 models were then compared using a 
bias-corrected version (AICc) of the Akaike Information Criterion 
(AIC), which discourages overfitting. The AICc values were used 
to obtain coefficient estimates that were weighted averages over 
all 63 models, a technique known as multimodel inference (5). 
This part of the analysis was performed in Mathematica, ver-
sion 8.0.1.0 for Mac (Wolfram Research - Champaign, Illinois). The 
remainder was done with the use of SAS/STAT, version 9.2 of the 
SAS System for Linux (SAS Institute, Inc. - Cary, North Carolina).

Results

Predictive Values of Individual Morphologic Assays 
for Animal Tumor Efficacy Outcomes

The estimated coefficients in the predictive models are pro-
vided in Table 3. The magnitude (absolute value) of a slope coef-
ficient indicates how strongly the outcome of the associated 
morphologic assay predicts the outcome of the tumor assay. 
The sign of a slope coefficient indicates whether the relation-
ship of the outcome of the morphologic assay to the odds of 
the outcome of the tumor assay being at most j (j = 0, 1, 2) is 
a direct one (positive slope) or an inverse one (negative slope). 
Most of the slope coefficients in Table 3 being negative shows 
that this relationship is generally an inverse one, with larger 

Figure 2.  Agents tested in Division of Cancer Prevention assays. A) Number of 

agents tested in morphologic and animal tumor assays. B) Classes of agents 

tested. The 210 agents were representative of many functional or biological cat-

egories. To illustrate, each agent was assigned to the “best” category, where the 

best category was considered the more specific or more common category. For 

example, many agents with antioxidant activity were reported under specific 

enzyme or pathway activities.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv259/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv259/-/DC1
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outcomes of morphologic assays associated with smaller odds, 
which is equivalent to larger outcomes of the animal tumor 
assay. The two positive slopes in the table are too small to be of 
any consequence in the models. These estimated model coef-
ficients are used in the equations in Figure 3 (colon model) and 
Supplementary Figures 1 and 2 (available online), from which 
the graphs in Figure 4, A, B, and C, are generated. The strong-
est predictor is ACF for animal tumor assays of colon cancer. 
In the mammary tumor model, the MMOC assay is strongest, 

ACF having little effect on the outcome. These relationships 
between morphologic assays and tumor assays suggest disease 
site–specific connections.

Figure  4 displays the predictive value of each morphologic 
assay for a positive outcome in each animal tumor assay, using 
the model coefficients in Table  3. Any outcome of an animal 
tumor assay exceeding 0 is considered positive. Each plot-
ted point on a graph gives the minimum estimated probabil-
ity of a positive outcome of the animal tumor assay (vertical 

Table 1.  Characteristics of morphologic assays and percent of agents that tested positive*

Assay Model/inducer Criteria for a positive result† Positive/total agents (% positive)

ACF F344 rats/AOM Statistically significant (P < .05) decrease in ACF 152/244 (62)
A427 Human lung carcinoma cells/NA ≥20% inhibition of anchorage-independent colony 

formation at one or more concentrations
253/336 (75)

HFE Neonatal human foreskin epidermal 
cells/PS

≥30% growth inhibition; or ≥20% involucrin induc-
tion; or ≥20% PCNA† expression inhibition – at 
two consecutive, nontoxic concentrations

57/65 (88)

JB6 Mouse epidermal cells/TPA Statistically significant (P < .05) decrease in anchor-
age-independent colony formation

60/110 (54)

MMOC BALBc mammary glands/DMBA ≥60% decrease of hyperplastic nodules 184/350 (53)
RTE F344 tracheal epithelial cells/B[a]P ≥20% inhibition of transformed foci at two or more 

nontoxic concentrations
283/388 (73)

* The six morphologic assays comprise five in vitro assays: rat tracheal epithelial cell (RTE), human lung tumor A427 cell (A427), mouse mammary organ culture 

(MMOC), mouse JB6 epidermal cell (JB6), and human foreskin epithelial cell (HFE); and one in vivo assay: aberrant crypt foci (ACF) in rats (1). The best result for each 

agent in each assay was incorporated into the statistical model. To fit a good statistical model, a reasonable percent of agents should test negative as well as positive 

in a given morphologic assay. If the percent testing positive is too high, less discrimination is achieved among tested agents. A427 = human lung tumor A427 cell; 

ACF = aberrant crypt foci; AOM = azoxymethane; B[a]P = benzo[a]pyrene; DMBA = 7,12-dimethylbenz[a]anthracene; HFE = human foreskin epithelial cell; JB6 = mouse 

JB6 epidermal cell; MMOC = mouse mammary organ culture; RTE = rat tracheal epithelial cell; NA = not applicable; PS = propane sultone; PCNA = proliferating cell 

nuclear antigen; TPA = tetradecanoylphorbol acetate.

† Each endpoint is evaluated in comparison with the vehicle or solvent control. Of the 552 agents, 484 were positive in at least one assay.

Table 2.  Result rank definitions*

Rank integer General definition Inhibition ranges HFE MMOC

0 Not efficacious (NE) <20% < Minimum criterion for a positive result <60%
1 Weak positive (+) 20 – <50% Minimum positive criterion – <50% 60 – <75%
2 Moderate positive (++) 50 – <75% 50 – <75% 75 – <90%
3 Strong positive (+++) ≥75% ≥75% ≥90%

* Results were normalized by assignment of a rank integer corresponding to the strength of positivity of the result. All animal efficacy and most morphologic assays 

used the general inhibition ranges shown in the third column. Human foreskin epithelial cell (HFE) and mouse mammary organ culture (MMOC) assays used slightly 

different scales (columns 4 and 5) based on the less quantitative nature of weak positive results (HFE) or an increased stringency for MMOC results that better cor-

relates with animal mammary results. HFE = human foreskin epithelial cell; MMOC = mouse mammary organ culture.

Table 3.  Predictive model coefficients*

Assay General model (all sites) Colon model Mammary model

Slopes (standard error)
ACF −0.559 (0.184) −0.698 (0.205) −0.031 (0.094)
A427 0.019 (0.060) −0.092 (0.164) −0.205 (0.174)
HFE −0.159 (0.204) −0.015 (0.135) −0.329 (0.255)
JB6 −0.031 (0.095) −0.076 (0.220) −0.010 (0.077)
MMOC −0.288 (0.168) 0.002 (0.073) −0.428 (0.177)
RTE −0.153 (0.139) −0.075 (0.124) −0.111 (0.140)
Intercepts (standard error)
Y=0  0.849 (0.526) 0.410 (0.648) 1.521 (0.668)
Y=1  1.849 (0.554) 1.594 (0.659) 2.891 (0.713)
Y=2  2.538 (0.576) 2.942 (0.702) 4.065 (0.772)

* Slopes and intercepts in the ordinal logistic regression models are presented, where Y is the potential outcome of the animal tumor assay. An example of using 

the coefficients in the general model is shown in Figure 3. A427 = human lung tumor A427 cell; ACF = aberrant crypt foci; HFE = human foreskin epithelial cell; 

JB6 = mouse JB6 epidermal cell; MMOC = mouse mammary organ culture; RTE = rat tracheal epithelial cell.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv259/-/DC1
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coordinate) at the specified outcome of the morphologic assay 
(horizontal coordinate). The estimated probability shown on the 
graph is a minimum because the outcomes of all other mor-
phologic assays have been set to 0. The maximum probability 
for a positive outcome in an animal tumor assay is 0.84, when 
the ACF assay outcome is 3. The predictive value of the MMOC 
assay does not reach this level, peaking at 0.44. A high predictive 
value provides support for advancing an agent to the next stage 
of testing according to the “decision-gate” process depicted in 
Figure 1.

Combinations of Morphologic Assays to Improve 
Predictive Ability

Given the limited value that individual morphologic assays 
have in predicting positivity in tumor assays, we investigated 
the extent to which predictive values of morphologic assays 
improved when they were used in combination (Figure 5). This 
approach as applied to the general model (Figure 5A) illustrates 
the value of combining results from independent assays in a 
systematic manner. Although the ACF and MMOC assays yield 
moderate results (both 2), adding results for two more assays, 
RTE and HFE, improves the predictive probability that an animal 
tumor assay will be positive so that it exceeds 80% if the results 
of the latter two assays sum to more than 4. With respect to 
the colon tumor model, an ACF morphologic assay result of 3 is 
sufficient for a probability of a positive colon tumor assay out-
come in excess of 0.8 (Figure 5B). With a moderate ACF result of 
2, experimentally more common, a predictive value of 0.8 can be 
achieved when at least two additional morphologic assays yield 
adequate results. An ACF result of 2 (first grid) combined with an 
RTE result of 3 (middle grid) and an A427 result of 2 or 3 (third 
grid) yields at least a 0.8 probability that the agent in question 
will exhibit positive efficacy in a colon tumor assay. As shown, a 
similarly high result (2 or 3) in the HFE assay will not guarantee 
attainment of this threshold probability. As indicated earlier, the 
MMOC assay has a predictive value at least between 0.4 and 0.5 
for a positive mammary tumor assay outcome when its result is 
3. Results of 3 in both MMOC and RTE raise the predictive value 

to at least between 0.5 and 0.6 (Figure 5C, first grid). When these 
maximal MMOC and RTE results are combined with a maximal 
HFE result (3) and a moderate-to-strong A427 result (2 or 3), a 
predictive value of at least 0.8 can be achieved (Figure 5C, sec-
ond grid, top). Moderate results (2) for both MMOC and RTE com-
bined with a maximal HFE result (3) and a moderate-to-strong 
A427 result (2 or 3) yield a predictive value at least between 0.7 
and 0.8 (Figure 5C, second grid, bottom).

Discussion

The current drug development approach is resource-intensive, 
posing considerable challenges in many diseases. Oncology 
drugs have fared worse than pharmaceuticals in other therapeu-
tic areas. For oncology agents that entered the clinic from 1993 
to 2004, the success rate for drug approval was less than 20% 
(6). Only 5% of drugs that show anticancer activity in preclinical 
models are sufficiently efficacious in phase 3 trials to progress to 
being approved (7), in contrast to 20% of cardiovascular agents. 
These factors contribute to an increasingly unprofitable return 
on investment (6–8). Agent development in cancer prevention 
faces even greater hurdles. Relevant clinical endpoints, specifi-
cally cancer incidence, are rare events, and concerns about tox-
icity in healthy individuals are paramount. Even early stages of 
preventive agent development often prove disappointing, with 
agents that show positive outcomes in morphologic assays not 
performing with the same efficacy in the more resource-inten-
sive animal assays.

The NCI/DCP has had qualified success in its chemopreven-
tive agent development program. To optimize resource use, DCP 
periodically evaluates the ability of early-stage efficacy out-
comes to predict outcomes at subsequent stages, with a goal 
of developing statistical models to guide the decision-making 
process. The first such analysis, in 1996, examined the predic-
tive capabilities of five morphologic assays used to screen the 
efficacy of potential chemopreventive agents (1). The greater 
the number of positive morphologic assays, the greater their 
ability to predict at least one positive animal tumor assay. The 
current evaluation aimed to update the 1996 analysis, because 

Figure 3.  Colon-specific model for predicting the outcome of the animal tumor assays from the results of the morphologic assays.
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many more agents have been tested and additional assays at 
both morphologic and animal tumor stages have been imple-
mented. Furthermore, in 1996 the criteria for positivity at both 
the morphologic and the animal tumor stages were coarse and 
did not allow for degrees of variation. A positive morphologic 
assay was one in which inhibition of the endpoint reached a 
threshold, often 20%, depending on the assay. This cutoff was 
used to generate a dichotomous outcome, positive or nega-
tive. In the current evaluation, we employed criteria of a finer 
grain. The outcome of each combination of agent and assay 
was assigned an integer ranging from 0 to 3, depending on the 
percent inhibition (Table 2). Any result greater than 0 was posi-
tive. In addition to the coarseness of its positivity definition, 

the earlier analysis did not weight morphologic assays on the 
basis of predictive ability. One positive assay was as good as any 
other. In contrast, our current statistical modeling approach 
weighted the six selected morphologic assays on the basis of 
predictive value.

The most predictive morphologic test was the ACF assay, 
likely attributable to its being the only in vivo morphologic 
assay recapitulating the live animal setting used in the later-
stage tumor assays. The ACF prediction was also very specific for 
colon cancer assays, showing no impact on breast tumor assays. 
In contrast, the in vitro MMOC morphologic assay only mildly 
predicted efficacy in mammary tumor assays. Thus, identity of 
tissue type between morphologic and animal tumor assays is 
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Figure 4.  Predictive model graphs. For each tumor class, the graph for any positive result is shown. This presentation is a visual version of the coefficients. For each 

morphologic assay, the possible results are shown on the x-axis, and the results for the other five assays are set to 0. Each graphed line depicts the probability of a 

tumor efficacy result of 1, 2, or 3 (y-axis) in at least one tumor endpoint (incidence, multiplicity, tumor burden). A427 = human lung tumor A427 cell; ACF = aberrant 

crypt foci; HFE = human foreskin epithelial cell; JB6 = mouse JB6 epidermal cell; MMOC = mouse mammary organ culture; RTE = rat tracheal epithelial cell.
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Figure 5.  Tumor model heat maps. Additive value of additional morphologic assays is illustrated in the following sets of heat maps. A) For the general tumor model, 

given moderate aberrant crypt foci (ACF) and mouse mammary organ culture (MMOC) results (both 2), the effect of adding results for two more assays, rat tracheal 

epithelial cell (RTE) and human foreskin epithelial cell (HFE), is shown. The inset shows that any positive result in the additional assays is sufficient to bring the prob-

ability of a positive tumor assay result to 0.7 or above, but combined results adding to 4 or above are needed to bring the probability of a positive tumor result to 0.8 

or above. B) An ACF result of 3 gives a probability of a positive colon tumor result of 0.8 or above. If a moderate ACF result (2) is obtained (experimentally more com-

mon), a probability of 0.8 cannot be achieved using a single additional assay (middle grid). With a moderate ACF result (2) and a strong RTE result (3), the addition of a 

moderate or strong result (2 or 3) in the human lung tumor A427 cell (A427) is sufficient to bring the probability to 0.8 or above. In contrast, the addition of HFE results 

will not increase the probability of a positive colon tumor result. C) Given moderate MMOC and RTE results (both 2), adding A427 and HFE results may give a positive 

tumor assay probability of 0.7 or above. A probability over 0.8 is possible with strong positive results for MMOC, RTE, and HFE (all 3) and moderate to strong results for 

A427 (2 or 3). Under these conditions, neither mouse JB6 epidermal cell nor ACF has a substantial influence on the probability of a positive mammary tumor result. 

A427 = human lung tumor A427 cell; ACF = aberrant crypt foci; HFE = human foreskin epithelial cell; JB6 = mouse JB6 epidermal cell; MMOC = mouse mammary organ 

culture; RTE = rat tracheal epithelial cell.
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not entirely associated with a strong predictive value of the for-
mer for the latter.

Our statistical models addressing breast and colon can-
cers provide quantitative decision support tools for the future 
development of chemopreventive agents for these diseases. 
They suggest a stepwise approach to performing morphologic 
assays in gathering evidence to support further testing in ani-
mal tumor assays. In this approach, one begins by performing 
the morphologic assay that is most predictive of the outcome 
of the animal tumor assay, based on having the slope coef-
ficient of greatest magnitude in the model. For example, for 
colon cancer, this morphologic assay would be ACF. One then 
inserts the result of this assay into the model and computes 
the highest probability of a positive animal tumor assay that 
could be attained. Such a probability is achieved when all mor-
phologic assays that have not yet been performed are assumed 
to yield integer values of 3.  If this probability is sufficiently 
large (exceeding, for example, an arbitrary threshold of 0.8), the 
motivation exists to continue to the morphologic assay that is 
the next most predictive of the outcome of the animal tumor 
assay. If not, no further morphologic assays are performed, 
and the conclusion is ineffectiveness of the chemopreventive 
agent. The procedure continues in this fashion until either it is 
clear that further testing will not result in the threshold prob-
ability ever being reached, or the morphologic assays done so 
far have yielded values that result in the threshold probability 
being crossed irrespective of what values the other morpho-
logic assays may produce. The value of the threshold prob-
ability may be selected to provide a specified assurance that 
an agent with a certain high probability of positivity will pro-
ceed to testing in an animal tumor assay. This approach would 
reduce the number of morphologic assays performed, allow-
ing optimization of resources supporting the research. The full 
complement of morphologic assays would be performed only 
on rare occasions. Performance characteristics of this approach 
will be further studied in future work.

Several features limit the generalizability of our analysis. 
First, the data came out of an actual research endeavor in 
which agents were prioritized for further, more expensive test-
ing. In general, agents that did not perform well in a subset of 
the six available morphologic assays were not tested further, 
a decision based on pragmatic considerations. Consequently, 
the data were incomplete, and combinations of outcomes of 
morphologic assays were not evenly represented. Data incom-
pleteness was addressed through multiple imputation. We 
did not assume that data were missing completely at random 
(MCAR), in which case missingness is entirely independent of 
data, observed or unobserved. Rather, we made the missing-
at-random (MAR) assumption, according to which unobserved 
data provide no additional information about missingness 
over that given by observed data. We believe that, given the 
process by which the data were generated, this is a reasonable 
assumption. With regard to representation of morphologic 

assay outcomes, we remark that negative morphologic results 
were sometimes pursued with follow-up animal tumor assays 
based on other considerations, such as mechanistic obser-
vations. The net result was animal tumor assay follow-up to 
both negative and positive morphologic assays in our dataset. 
Among the 210 agents tested in both morphologic and ani-
mal tumor assays, 56 agents had negative ACF, 43 had nega-
tive A427, eight had negative HFE, 36 had negative JB6, 66 had 
negative MMOC, and 45 had negative RTE assays. Furthermore, 
there were 78 agents with negative animal tumor assays, 
tempering potential concerns about bias toward positive 
outcomes.

Second, the current analysis did not address the transi-
tion from animal tumor assays to human clinical trials. Thus, 
we were unable to deduce the applicability of drug efficacy to 
humans from this analysis. The juxtaposition of animal tumor 
assay results against data from human clinical trials will com-
prise the next steps of our overall prediction value project. 
Finally, our study is retrospective and does not represent a 
planned prospective analysis.

Two key observations emerged from this investigation. 
First, some of the morphologic assays are strongly predictive 
of meaningful positive efficacy outcomes in specific animal 
tumor assays. This is particularly true of the ACF assay, which 
in future drug development projects should play a major role 
when colon cancer is the ultimate prevention target. The second 
observation is that even less strongly predictive assays can be 
combined, resulting in enhanced composite predictive ability. 
This approach should facilitate rational selection of agents for 
progression from morphologic to animal tumor assays. The next 
step will be to expand our statistical modeling to animal assays 
of additional cancer sites, including bladder and lung cancers. 
We will also apply the same statistical modeling approach to 
evaluating the ability of animal tumor assays to predict out-
comes in humans, specifically in clinical trials. Our goal is to 
achieve more efficient use of increasingly scarce research 
resources.
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