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Abstract
Preclinical studies have shown that gefitinib, licofelone, atorvastatin, and α-difluoromethylornithine (GLAD) are
promising colon cancer chemopreventive agents. Because low-dose combination regimens can offer potential
additive or synergistic effects without toxicity, GLAD combination was tested for toxicity and chemopreventive
efficacy for suppression of intestinal tumorigenesis in adenomatous polyposis coli (APC)Min/+ mice. Six-week-old
wild-type and APCMin/+ mice were fed modified American Institute of Nutrition 76A diets with or without GLAD
(25 + 50 + 50 + 500 ppm) for 14 weeks. Dietary GLAD caused no signs of toxicity based on organ pathology
and liver enzyme profiles. GLAD feeding strongly inhibited (80–83%, P < .0001) total intestinal tumor multiplicity
and size in APCMin/+ mice (means ± SEM tumors for control vs GLAD were 67.1 ± 5.4 vs 11.3 ± 1.1 in males and
72.3 ± 8.9 vs 14.5 ± 2.8 in females). Mice fed GLAD had >95% fewer polyps with sizes of >2 mm compared
with control mice and showed 75% and 85% inhibition of colonic tumors in males and females, respectively.
Molecular analyses of polyps suggested that GLAD exerts efficacy by inhibiting cell proliferation, inducing apop-
tosis, decreasing β-catenin and caveolin-1 levels, increasing caspase-3 cleavage and p21, and modulating expression
profile of inflammatory cytokines. These observations demonstrate that GLAD, a novel cocktail of chemopreven-
tive agents at very low doses, suppresses intestinal tumorigenesis in APCMin/+ mice with no toxicity. This novel
strategy to prevent colorectal cancer is an important step in developing agents with high efficacy without unwanted
side effects.
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Introduction
Colorectal cancer is the third most common cause of cancer deaths in
the United States [1]. Globally, about 1.24 million cases and 610,000
deaths were reported in 2008 from colorectal cancers (CRCs) [2].
Identifying strategies that interrupt the process of carcinogenesis
without causing undue side effects is critical to long-term successful
application of chemoprevention to high-risk populations. Chemo-
prevention of cancer is a strategy that employs treatments during
the stages of carcinogenesis before the development of invasive cancer.
Chemoprevention has emerged as a pragmatic approach to reduce the
risk of various cancers including CRC [3].
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Use of animal models in which disease progression can be followed
allows testing of chemopreventive agents. The adenomatous polyp-
osis coli (APC)Min/+ mouse, one of the most studied models of
intestinal tumorigenesis, harbors a dominant germ-line mutation in
the APC gene at codon 850, the mouse homologue of a similar
mutation in human patients with familial adenomatous polyposis
[4,5]. APCMin/+ mice develop multiple adenomas in the intestinal
tract, primarily in the small intestine (SI) with fewer in the colon
[5]. Thus, the APCMin/+ mouse model is extensively used in both
mechanistic and chemoprevention/intervention efficacy studies [5,6].
Drug development has led to discovery of potential chemopreven-

tive agents that are effective at the preclinical and clinical levels [7–14].
For example, anti-inflammatory agents that target cyclooxygenase-2
(COX-2), such as celecoxib, are noteworthy because of their clinical
efficacy in the prevention of polyp formation [12]. However, recent
5-year efficacy and safety analysis of adenoma prevention with celecoxib
suggests a significant interaction between celecoxib treatment and cardio-
vascular and thrombotic events for those reporting a baseline history of
atherosclerotic heart disease [12]. Overall, targeting COX-2 for colon
cancer prevention is still valid, but use of higher doses of COX-2 inhib-
itors in individuals at high risk for colon cancer and, more so, in those at
high risk for atherosclerotic events carries significant risk and indicates a
need for new approaches to colon cancer prevention and treatment.
Similarly, clinical use of the epidermal growth factor receptor (EGFR)
inhibitor gefitinib and the selective ornithine decarboxylase (ODC)
inhibitor D,L-α-difluoromethylornithine (DFMO) as anticancer agents
is associated with skin and ototoxicity, respectively [15,16].
Recently, focus has been directed at the strategy of combining

several chemopreventive agents at low doses to achieve greater inhibi-
tion of carcinogenesis [17–19]. Combining agents that work by differ-
ent mechanisms has the potential of providing additive or synergistic
effects, and lowering doses of individual agents in a combination offers
the prospect of reduced toxicities [17–21]. Combinations of agents
targeting polyamine synthesis and inflammation for chemoprevention
of colon and intestinal carcinogenesis have been evaluated in several
rodent models [18]. DFMO has been tested alone and in combination
with several nonsteroidal anti-inflammatory drugs (NSAIDs), including
piroxicam [22], aspirin [23], celecoxib [24], and sulindac [25]. Poly-
amines contribute to inflammatory responses by mechanisms in addi-
tion to those affecting tissue arginine levels. Polyamines also can
influence the expression of the proinflammatory gene COX-2 by a post-
transcriptional mechanism [18]. The combinations of DFMO with
NSAIDs have proven to be potent inhibitors of colon and intestinal
polyp formation both in rodents and in humans [22–27].
The activation of EGFR results in promotion of growth through

transcription of the COX-2 gene and inhibition of apoptosis [28]. Sim-
ilarly, the COX-2 signaling pathway activates EGFR phosphorylation
and EGFR transcription [28]. Because both EGFR and COX-2 path-
ways are involved in cell growth andmodulation of apoptosis, improved
inhibition of these pathways by combination inhibitor regimens could
partly account for the observed potentiation of the effects of the EGFR
inhibitor erlotinib by the COX-2 inhibitor celecoxib [28].
Several studies suggest that statins [3-hydroxy-3-methylglutaryl

CoA reductase (HMGR) inhibitors] suppress chemically induced colon
carcinogenesis in animal models [29,30]. Clinical observations show an
inverse relationship between the use of statins and the reduction of
colon cancers [31]. In two large clinical trials involving patients with
coronary artery disease, use of the statins led to a 43% [32] and a
19% [33] reduction, respectively, in the number of newly diagnosed

cases of colon cancer during a 5-year follow-up period. In the same
study, 83% of patients in both the pravastatin group and placebo group
were given a daily dose of aspirin. Only patients taking pravastatin
along with aspirin showed a greater reduction in the incidence of
new cases of colon cancer, suggesting a possible synergistic effect of
HMGR inhibitors with NSAIDs in colon cancer reduction [32]. In
support of potential synergy between these agents, we previously
showed inhibition of colon carcinogenesis in rodent models with a
combination of low doses of statins and NSAIDs [19,34,35].
Preclinical studies have shown previously that the EGFR inhibitor

gefitinib, the novel COX-lipoxygenase (LOX) inhibitor licofelone,
the HMGR inhibitor atorvastatin, and the ODC inhibitor DFMO
are all promising colon cancer chemopreventive agents (GLAD)
[13,18,35,36]. Each has been shown to be effective as a single agent
and in combinations, by targeting critical pathways of colon carcino-
genesis, and each is currently in clinical use or in trials of various
phases for treatment of colon or lung cancers, cholesterol lowering,
or arthritis. In the present study, we tested a very low dose [≤10% of
the maximum tolerated dose (MTD)] combination of these four
agents for prevention of colon cancer.

Materials and Methods

Chemicals
All the chemopreventive agents (GLAD; Figure 1) were kindly

provided by the National Cancer Institute’s Chemopreventive Drug
Repository (Rockville, MD). Primary antibodies to proliferating cell
nuclear antigen (PCNA), caveolin-1, p21, and β-catenin were from
Santa Cruz Biotechnology (Santa Cruz, CA) caspase-3 and β-actin were
from Cell Signaling Technology (Danvers, MA) HRP-conjugated sec-
ondary antibodies were from Santa Cruz Biotechnology. Multi-Analyte
ELISArray Kit was from SA Biosciences (Frederick, MD).

Breeding and Genotyping of APCMin/+ Mice
All animal experiments were performed in accordance with the

institutional guidelines of the American Council on Animal Care
and were approved by the Institutional Animal Care and Use Com-
mittee at the University of Oklahoma Health Sciences Center
(OUHSC). Male APCMin/+ (C57BL/6J) and female wild-type litter-
mate mice initially were purchased from The Jackson Laboratory
(Bar Harbor, ME) as founders, and our own breeding colony was
established in the OUHSC Center Rodent Barrier Facility and geno-
typed according to the vendor’s instructions. All mice were housed
three per cage in ventilated cages under standardized conditions (21°C,
60% relative humidity, 12-hour light/12-hour dark cycle, 20 air
changes per hour). All mice were allowed ad libitum access to the
respective diets and automated tap water purified by reverse osmosis.

Diets
All ingredients for the semipurified diets were purchased from

Bioserv (Frenchtown, NJ) and stored at 4°C before diet preparation.
Diets were based on the modified American Institute of Nutrition
76A (AIN-76A) diet. GLAD was premixed with a small quantity
of diet and then blended into bulk diet using a Hobart mixer. Both
control and experimental diets were prepared weekly and stored in a
cold room. In this study, experimental diets were prepared with
AIN-76A diet containing 0 or 25 ppm gefitinib + 50 ppm licofelone +
50 ppm atorvastatin + 500 ppm DFMO (Figure 2A).
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Bioassay: Intestinal Tumorigenesis in APCMin/+ Mice
The antitumor efficacy of GLAD was assessed in male and female

APCMin/+ mice according to the experimental protocol summarized in
Figure 2B. Five-week-old male and female mice were randomized for
age and average body weights in each group (C57BL/6 or APCMin/+

mice, 10 per group), and mice were fed the AIN-76A diet for 1 week.
At 6 weeks of age, mice were fed control or GLAD experimental diets
until termination of the study. Body weight, animal behavior, and food
and fluid consumption were monitored weekly for signs of weight loss,
lethargy, or decreased consumption that might indicate intestinal ob-
struction or anemia. Mice were checked routinely for any other abnor-
malities. After 14 weeks of feeding, at 20 weeks of age, all mice were
killed by CO2 asphyxiation, blood was collected by heart puncture,
and serum was separated by centrifugation and stored at −80°C until
further analysis. This termination time was chosen to minimize the risk
of intercurrent mortality caused by severe progressive anemia, rectal pro-
lapse, or intestinal obstruction, which usually occurs among Min mice
at older than 20 weeks of age.
After necropsy, the entire intestinal tract was harvested, flushed

with 0.9% NaCl, and opened longitudinally from the esophagus
to the distal rectum. The tissue was flattened on filter paper to expose
the tumors and briefly frozen on dry ice to aid visual scoring of tumors.
The number, location, and size of visible tumors in the entire intestine
were determined under a dissection microscope (5×). All tumors were
scored and subdivided by location (duodenal, jejunal, ileum, and colon)
and size (>2, 1–2, or <1 mm in diameter). This procedure was com-
pleted by two individuals, who were blinded to the experimental group

and the genetic status of the mice. Colonic and other SI tumors that
required further histopathologic evaluation were fixed in 10% neutral-
buffered formalin and embedded in paraffin blocks. In addition, mul-
tiple samples of tumors from the intestines were harvested and stored
in liquid nitrogen for molecular analysis.

Assessment of Liver Enzymes and Packed Cell Volume
Liver enzymes in serum were quantified by the Veterinary Associ-

ates Laboratory (Edmond, OK) using Pointe Scientific Reagents
(Pointe Scientific, Canton, MI) and a Hitachi 717 chemistry analyzer,
as per the manufacturer’s instructions. For packed cell volume (PCV)/
hematocrit measurement, blood was sampled by cardiac puncture
with a 21-gauge needle attached to a 1-ml syringe and dispensed into
a plastic microfuge tube on ice. Microhematocrit tubes containing
ammonium heparin were then placed in the microfuge tubes and
centrifuged in a hematocrit centrifuge for 5 minutes.

Immunohistochemistry
To evaluate the effect of GLAD, we assessed the PCNA, p21, and

caveolin-1 expression in intestinal tumor tissue sections by immuno-
histochemistry. Briefly, paraffin sections were deparaffinized in xylene
and rehydrated through graded ethanol solutions to phosphate-buffered
saline (PBS). Antigen retrieval was carried out by heating sections in
0.01 M citrate buffer (pH 6) for 30 minutes in a boiling water bath.
Endogenous peroxidase activity was quenched by incubating in 3%
H2O2 in PBS for 5 minutes. Nonspecific binding sites were blocked

Figure 1. Chemical structures of GLAD agents.
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using protein block for 20 minutes. Sections then were incubated
overnight at 4°C with 1:300 dilutions of mouse monoclonal antibodies
against PCNA, p21, and rabbit polyclonal antibody against caveolin-1
(Santa Cruz Biotechnology). After several washes with PBS, the slides
were incubated with secondary antibody for PCNA, p21, and
caveolin-1 for 2 hours. The color reaction was developed with 3,3′-
diaminobenzidine, according to the manufacturer’s instructions given
in the kit supplied by Zymed Laboratories (Camarillo, CA). Non-
immune rabbit Igs were substituted for primary antibodies as negative
controls. Scoring, using light microscopy at ×400 magnification, was
performed by two investigators blinded to the identity of the samples.
Cells with brown nuclei were considered positive. The proliferation
index was determined by dividing the number of positive cells per
polyp (upper, middle, and lower) and multiplying by 100.

Western Blot Analysis of Protein Expression
Intestinal polyps from mice were homogenized and lysed in ice-

cold lysis buffer [50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM
EDTA, 1% NP-40, 50 mM NaF, 1 mM sodium orthovanadate, 1 mM
phenylmethylsulfonyl fluoride, 1 mM DTT, and 1× protease inhibitor
cocktail (Sigma, St Louis, MO)]. After a brief vortexing, the lysates
were separated by centrifugation at 12,000g for 15 minutes at 4°C,
and protein concentrations were measured with the Bio-Rad Protein
Assay reagent (Hercules, CA). Proteins (50 μg/lane) from an aliquot
were separated with electrophoresis through 10% sodium dodecyl
sulfate–polyacrylamide gels and transferred to nitrocellulose mem-
branes. After blocking with 5% milk powder, membranes were probed
for expression of PCNA, p21, caspase-3, and β-actin in hybridizing
solution (1:500 in TBS–Tween 20 solution) using the respective pri-
mary antibodies and then probed with their respective HRP-conjugated
secondary antibodies. Detection was performed using the SuperSignal
West Pico Chemiluminescence procedure (Pierce, Rockford, IL). The
bands were captured on Ewen Parker Blue sensitive X-ray films and
analyzed by densitometry.

Reverse Transcription–Polymerase Chain Reaction for p21 and
β-Catenin mRNA Expression
Total RNA from intestinal polyp samples was extracted using the

TRIzol RNA Kit (Invitrogen, Carlsbad, CA) as per the manufac-
turer’s instructions. Equal quantities of DNA-free RNA were used
in reverse transcription (RT) reactions for making cDNA using
SuperScript Reverse Transcriptase (Invitrogen). RT–polymerase
chain reactions (PCRs) were performed for p21 and β-catenin using the
Taq polymerase, 10 mM deoxyribonucleotide triphosphates (dNTPs),
respective primers, and buffers from Invitrogen. For p21, denatur-
ation at 94°C for 3 minutes was followed by 35 cycles at 94°C for
30 seconds, 60°C for 20 seconds, and 72°C for 45 seconds. Oligo-
nucleotide primer sequences used for p21 were given as follows: sense,
5′-TCCTGGTGATGTCCGACCTG-3′; antisense, 5′-TCCGTTTT-
CGGCCCTGAG-3′. For β-catenin, denaturation at 94°C for 3 min-
utes was followed by 35 cycles at 94°C for 30 seconds, 60°C for
20 seconds, and 72°C for 45 seconds. Oligonucleotide primer se-
quences used for the β-catenin gene were given as follows: sense,
5′-CGTCAGTGCAGGAGGCCGAG-3′; antisense, 5′-TCCTCA-
GGGTTGCCCTTGCCA-3′. The PCR products were visualized
and photographed under UV illumination.

Apoptosis Assay
Paraffin sections of 5-μm thickness were mounted on slides and

rehydrated. They were stained using the terminal deoxynucleotidyl
transferase–dUTP nick end labeling (TUNEL) method using the Frag-
ment End Labeling DNA Fragmentation Detection Kit (Calbiochem,
Billerica, MA) following the manufacturer’s instructions to detect
apoptotic nuclei. Terminal deoxynucleotidyl transferase binds to exposed
ends of DNA fragments generated in response to apoptotic signals and
catalyzes the template-dependent addition of biotin-labeled and un-
labeled deoxynucleotides. Biotinylated nucleotides are detected using
streptavidin-HRP conjugate. Diaminobenzidine reacts with the labeled
sample to generate an insoluble colored product at the site of DNA

Figure 2. (A) Doses and molecular targets of GLAD agents. (B) Experimental design for evaluation of the chemopreventive efficacy of
GLAD administered in the diet from 6 weeks of age to the end of the experiment. Modified AIN-76A was the control diet. The study was
terminated after 100 days. For details about animals and treatments, see Materials and Methods section.
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fragmentation. Counterstaining with methyl green aids in the morpho-
logic evaluation and characterization of normal and apoptotic cells.
Stained apoptotic epithelial cells (a minimum of 10 microscopic fields
per section) were counted manually in a single-blind fashion.

Inflammatory Cytokine Assay
Determination of inflammatory cytokine levels in serum was eval-

uated by ELISA (SA Biosciences) as per the manufacturer’s instruc-
tion and our previous publications [13]. The Mouse Inflammatory
Cytokines and Chemokines Multi-Analyte ELISArray Kit analyzes
a panel of 12 proinflammatory cytokines in serum all at once using
an ELISA protocol under uniform conditions. The cytokines and
chemokines included in this array are interleukin 1A (IL-1A), IL-1β,
IL-2, IL-4, IL-6, IL-10, IL-12, IL-17A, interferon-γ, tumor necrosis
factor–α (TNF-α), granulocyte colony-stimulating factor (G-CSF),
and granulocyte-macrophage colony-stimulating factor (GM-CSF).
Results are expressed as nanogram per milliliter of serum. Determina-
tion was carried out in triplicate from each sample.

Sample Size and Statistical Analyses
For cellular and molecular outcome parameters, a sample size of

six (depending on marker variability) per treatment was calculated
to be adequate to produce effects that are statistically distinguishable.
All results are expressed as means ± SE. Differences in body weights
were analyzed by analysis of variance, and differences in tumor

multiplicity and volume were determined by Student’s t test. Differ-
ences were considered significant at the P < .05 level. All statistical
analysis was performed in GraphPad Prism Software 5.0 (GraphPad
Software, Inc, San Diego, CA).

Results

GLAD Lacks Overt Toxicity
Wild-type C57Bl/6 mice fed the GLAD diet did not show any

overt toxicity or body weight loss. As expected, control diet–fed
APCMin/+ mice of both genders began to lose body weight at approx-
imately 13 weeks of age because of intestinal obstruction and pro-
gressive anemia. APCMin/+ mice fed the GLAD diet showed a
steady increase in body weights similar to the wild-type mice with
no noticeable signs of toxicity. Statistically significant (P < .05) dif-
ferences in body weights were observed between the dietary groups
(Figure 3, A and B). Our studies and other reports have shown that
these agents (GLAD) administered to wild-type mice (at up to 10%
MTD in the diet) for 6 weeks have not caused any observable tox-
icity or significant body weight loss (data not shown). Thus, GLAD
doses applied in the efficacy studies were free from overt toxicity.
APCMin/+ mice fed the control diet showed alterations in most liver
enzymes over the course of the 14-week experimental period
(Figure 3C ). We observed a several fold increase in the aspartate

Figure 3. Male and female C57BL/6J and APCMin/+ mice (10 per group) were fed control diet or diet containing GLAD (25 + 50 + 50 +
500 ppm, respectively) for 100 days and body weights are plotted for males (A) and females (B). No significant differences were
observed in the wild-type mice fed control or GLAD diet. Statistically significant differences in body weight between GLAD-treated
and control groups were observed for APCMin/+ mice. GLAD-treated animals were found to gain weight by the end of the study.
(C) Liver enzyme profiles in the serum of APCMin/+ mice fed control or GLAD diets. Serum from GLAD-fed animals showed marked
decrease in aspartate aminotransferase and increased alanine aminotransferase levels. (D and E) PCVs of male or female wild-type
and APCMin/+ mice fed either control or GLAD diets. A significant increase in PCV was observed in treated versus untreated APCMin/+ mice.
The PCV of GLAD-treated APCMin/+ mice is comparable to that of the control and treated wild-type mice.
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aminotransferase/alanine aminotransferase ratio in APCMin/+ mice fed
the control diet, whereas this ratio was reduced by 50% in APCMin/+

mice fed the GLAD diet, indicating less liver damage (Figure 3C ).
The APCMin/+ mice fed the GLAD diet had no significant anemia,
and PCV of these mice is comparable to that of wild-type mice fed
GLAD (Figure 3, D and E ). These results clearly show that GLAD,
at the tested doses, lacks overt toxicity.

Chemopreventive Efficacy of GLAD in APCMin/+ Mice
To assess the effects of GLAD on intestinal tumor formation in

APC mutant transgenic mice, we examined the polyp number and
size in different regions of the SI and colon. GLAD treatment of
APCMin/+ mice resulted in a strong inhibition of intestinal tumori-
genesis in terms of decreased polyp number and size in the SI (Fig-
ure 4, A–D). Male mice fed control and GLAD diets developed

67.1 ± 5.4 and 11.3 ± 1.1 (means ± SEM), respectively; females devel-
oped 72.3 ± 8.9 and 14.5 ± 2.8 SI polyps, without and with GLAD,
respectively. GLAD caused 83% or 80% (P < .0001) inhibition of
intestinal tumors in male and female APCMin/+ mice, respectively. Spe-
cifically, control APCMin/+ mice developed, on average, 3.7, 49.4, and
15.57 polyps of >2 mm, 1 to 2 mm, and <1 mm sizes, respectively, in
males and 8.7, 47, and 17.7 polyps of those sizes in females. GLAD diet
feeding for 14 weeks significantly decreased polyp numbers and sizes in
the SI (Figure 4, A–D). Mice fed GLAD had >95% fewer SI polyps of a
size of >2 mm compared with control mice (P < .02–.0001) (Figure 4,
C and D). GLAD also significantly decreased the number of colonic
polyps in APCMin/+ mice (by 75% and 85% in males and females,
respectively; P < .03–.001; Figure 4, E and F ). The GLAD cocktail
also decreased the size of colonic polyps by 46% and 56% in male
and female mice, respectively.

Figure 4. (A) Inhibition of total SI polyp formation in male APCMin/+ mice by GLAD. Values are means ± SEM of 10 animals per treatment
group. Control and treated groups are significantly different from one another (P < .0001). (B) Inhibition of total SI polyp formation in
female APCMin/+ mice by GLAD. Values are means ± SE of 10 animals per treatment. Control and treated groups are significantly dif-
ferent from one another (P < .0001). (C and D) Polyp sizes in the SI of APCMin/+ mice. Intestines were divided into sections, examined
under a stereomicroscope, and the size of polyps was determined. Values are given as means ± SE of 10 animals per treatment.
Tumors greater than 2-mm diameter were suppressed by >95% (P < .02–.0001) in GLAD-treated mice. (E) Average number of colon
tumors per mouse in control and treated male APCMin/+ mice. A significant (P < .003) inhibition of colon tumors was observed with
GLAD treatment. (F) Average number of colon tumors per mouse in control and treated APCMin/+ female mice. A significant (P < .001)
inhibition of colon tumors was observed with GLAD treatment.
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GLAD Feeding Inhibits Proliferation and Induces Apoptosis in
Intestinal Polyps of APCMin/+ Mice
To assess whether GLAD efficacy is associated with in vivo anti-

proliferative and proapoptotic effects, SI polyps and colon tumors
were analyzed for PCNA and TUNEL, widely used markers for cell
proliferation and apoptosis, respectively, by either immunostaining
or immunoblot analysis. Microscopic examination of tissue sections
showed a decrease in PCNA-positive cells (Figures 5A and 6A) but
an increase in TUNEL-positive cells (Figure 6B) in intestinal polyps
from APCMin/+ mice fed GLAD diet compared with control diet.
Qualitative microscopic examination of PCNA-stained sections
showed a substantial decrease in PCNA-positive cells in the intestinal
polyps from GLAD-fed mice compared with the untreated controls.
Quantification of PCNA staining showed 72% (SI polyps) and 83%
(colon tumors) (P < .0001) decrease in proliferation indices in colon
tumors from GLAD-fed mice compared with controls. TUNEL-
positive cells increased by 2.5-fold (P < .0001) (Figures 6B and
W2). These results were confirmed further by immunoblot analysis
(Figure 5A), with β-actin as a loading control. Together, these results
show in vivo antiproliferative and proapoptotic effects of GLAD in
polyps, supporting its chemopreventive efficacy against spontaneous
intestinal tumorigenesis in APCMin/+ mice.

GLAD Decreases Caveolin-1 and β-Catenin and Increases p21
and Caspase-3 in Intestinal Polyps of APCMin/+ Mice
Alteration in the β-catenin pathway due to loss of APC function

has been implicated in CRC initiation and progression [37]. β-Catenin
and caveolin-1 have important roles in cell cycle progression. Expres-
sion of these two proteins was analyzed in SI polyps and colon tumors
by immunohistochemistry or RT-PCR (Figures 5B and 6A). A sig-
nificant decrease in caveolin-1 and β-catenin protein expression was
observed in intestinal polyps from GLAD-treated mice (Figure 5B).
Dietary administration of GLAD also resulted in a significant increase
in p21 expression and caspase-3 cleavage, indicators of apoptosis,
in intestinal polyps compared with control polyps as observed with
immunostaining, immunoblot analysis, and/or RT-PCR (Figures 5C
and 6A). Collectively, these results correlate with the inhibition of pro-
liferation and increase in apoptosis.

Modulation of Inflammatory Cytokines
To examine GLAD effect on expression of various circulating cyto-

kines, we screened serum from both control and GLAD-fed APCMin/+

mice with an inflammatory cytokine array (Figure W1). Among 12 cyto-
kines tested, GLAD significantly (P < .05 to P < .0001) decreased circu-
lating levels of 10 and increased the expression of one compared with

Figure 5. (A) Serial paraffin sections of SI and colon from APCMin/+ mice were subjected to immunohistochemical analysis using an anti-
PCNA monoclonal antibody. Intense positive staining for PCNA in the tumor region of control animals was observed. Staining for PCNA
was decreased in the nuclei of SI polyps and colon tumors from GLAD-treated animals. (B) Immunohistochemical staining for caveolin-1
expression in SI polyps and colon tumors from APCMin/+ mice fed control diet or treated with GLAD. Marked decrease in the expression
of caveolin-1 was observed in SI polyps and colon tumors in treated animals compared with that in control animals. (C) Immunohisto-
chemical staining for p21 expression in SI polyps and colon tumors from APCMin/+ mice fed control diet or treated with GLAD. Marked
increase in the expression of p21 was observed in SI polyps and colon tumors in treated animals compared with that in control animals.
All images are at ×60 magnification; p21-stained–treated SI polyp image is taken at ×40 magnification.
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control (Figure W1). G-CSF was observed to increase by approximately
37%, but no significant difference was observed in the expression of
GM-CSF (Figure W1).

Discussion
Preclinical, clinical, and epidemiological studies have shown clearly
that chemopreventive agents are effective for CRC. The potential
role of COX-2, 5-LOX, ODC, and EGFR signaling is well estab-
lished in colon carcinogenesis. Targeting of individual implicated
enzymes shows promising results; however, toxicity is a problem with
higher doses of many single agents. NSAIDs and COX-2–selective
inhibitors have been tested widely for CRC prevention. However,
the gastrointestinal and cardiovascular toxicities exhibited by these
agents have prompted the search for novel approaches or agents with
similar or higher efficacies but devoid of unwanted side effects. Sim-
ilarly, the EGFR inhibitor gefitinib has shown chemopreventive ef-
ficacy, but higher doses of gefitinib in humans result in diarrhea, skin
rash, and weight loss [15,38]. In an attempt to limit toxicities, we
have tested a low-dose, multiagent combination consisting of gefiti-
nib, licofelone (a novel dual COX-LOX inhibitor), atorvastatin (an
HMGR inhibitor), and DFMO (an ODC inhibitor) at very low
doses (≤10% MTD) as a new chemoprevention strategy for colon
cancer. Here, we showed that feeding of the GLAD combination in
low dose decreases spontaneous intestinal tumorigenesis in APCMin/+

mice, a genetically predisposed animal model of human familial adeno-
matous polyposis. The key findings of this study are given as follows:

1) GLAD significantly reduced the number as well as the size of SI
polyps and colonic tumors in male and female APCMin/+ mice without
any toxicities; 2) the chemopreventive effect of GLAD was associated
with a decrease in proliferation and an increase in apoptosis indices in
polyps; and 3) GLAD decreased β-catenin and caveolin-1 levels in in-
testinal polyps and decreased various proinflammatory cytokines in se-
rum.These results, together with earlier findingswith these agents tested
individually [13,24,35,39–42], strongly support the chemopreventive
efficacy of GLAD in this preclinical animal model of CRC, suggesting
the potential of this regimen for chemoprevention of human CRC.
The efficacy of GLAD in decreasing the number and size of SI

polyps in both male and female APCMin/+ mice is comparable to,
or better than, that of the individual agents at high doses or of com-
binations of only two GLAD agents (Table W1). For example, pre-
vious studies with APCMin/+ mice have shown that DFMO, at 0.5%
to 2% in drinking water (∼equivalent to 5000 and 20,000 ppm in
the diet), suppressed SI and colonic tumor formation by 25% to
53% and 8%, respectively, compared with that in mice fed control
diet [35,39–42]. The combination of DFMO with piroxicam sup-
pressed SI polyps by only 11%, and DFMO with arginine caused
about 44% suppression of colonic tumors (Table W1) [39]. Gefitinib
(10 mg/kg body weight, i.e., ∼equivalent to 200 ppm in the diet)
caused about 71% inhibition of tumor multiplicity in azoxymethane-
induced colon cancer in rats [42]. We previously have shown that a
combination of low doses of statin and sulindac or naproxen suppressed
azoxymethane-induced colonic aberrant crypt foci formation in rats
more effectively than each compound alone [19]. In addition, the

Figure 6. (A) Modulatory effects of GLAD on PCNA, p21, caspase-3, and β-catenin protein or mRNA expression in intestinal polyps of
treated and untreated APCMin/+ mice. A significant suppression of PCNA and β-catenin protein expression was observed upon GLAD
treatment in APCMin/+ mice. The protein and mRNA expression of p21 was increased with GLAD treatment. Caspase-3 cleavage was
significantly higher in the GLAD-treated SI polyps compared to untreated polyps. (B) TUNEL assay for apoptotic cells in colon tumors
from APCMin/+ mice fed control diet or treated with GLAD. A significant induction of apoptosis was observed in colonic tumors of treated
mice compared with those of untreated mice. A significant difference was observed in apoptotic index between GLAD-treated and
control groups. Tumors from treated mice showed approximately two-fold (P < .0001) induction of apoptosis compared with tumors
from control mice.
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combination of 100 ppm atorvastatin and 300 ppm celecoxib in the
diet significantly suppressed the intestinal polyps compared with the
control group [35]. In comparison, the GLAD combination, with very
low doses (≤10% MTD) of each agent, suppressed SI and colon tu-
mors by 85% in APCMin/+ mice and caused a significant decrease in the
size of SI and colonic polyps in both male and female mice (Figure 4).
Collectively, these results support additive to synergistic activity of the
agents in the low-dose GLAD combination with efficacy comparable
to, or even better than, that with the high-dose individual agents.
Overexpression of β-catenin is associated directly with increased

proliferative index in CRC and results in a more aggressive cancer
phenotype. A direct correlation between β-catenin signaling and reg-
ulation of angiogenesis and tumor growth also has been shown
[19,37]. In the present study, APCMin/+ mice showed an increased
level of β-catenin together with increased expression of caveolin-1
in polyps. Expression of both proteins was decreased significantly
by GLAD treatment, consistent with previous observations with sev-
eral of single agents [13,19].
Various inflammatory cytokines also are associated with growth

and development of CRC. The levels of circulating IL-6, IL-8,
M-CSF, and the IL-1 receptor antagonist significantly increase with
the clinical stage of CRC [43,44]; and increased levels of IL-6, TNF
receptor type I, soluble IL-2 receptor a, and TNF-α have been
observed with increasing tumor grade and bowel wall invasion
[43,44]. Some of these cytokines can be modulated by COX-2
and some of them also are regulated by the β-catenin pathway
[45,46]. Induction of COX-2 is also regulated by TNF-α and
IL-1β [45,46]. Tumor-promoting roles of TNF-α, interferon-γ,
IL-1α, IL-1β, and IL-6 during cancer development are well documented
[47]. IL-1β has been shown to enhance the production of vascular
endothelial growth factor through IL-2, which was shown to induce
angiogenesis in colon cancer cells [48]. TNF-α and IL-1β are key
cytokines involved in inflammation, immunity, and cellular organi-
zation [49]. In a previous study, we observed that licofelone treat-
ment alone led to significant decreases in most proinflammatory
cytokines [13]. Therefore, we also examined the GLAD effect on
the serum inflammatory cytokine profile using cytokine array anal-
ysis. The expression of TNF-α and IL-1β proteins was substantially
upregulated in the serum of control APCMin/+ mice compared with
that in wild-type mice. GLAD significantly decreased the levels of the
tumor-promoting and proinflammatory cytokines in the serum of
APCMin/+ mice (Figure W1). Thus, the suppression of TNF-α and
IL-1β expression by GLAD may contribute to the low frequency of
polyps observed in this study. Collectively, these results suggest that
the GLAD combination may exert some of its chemopreventive ef-
fects through its immunomodulatory activities.
Studies are needed to evaluate the appropriate doses for clinical

settings. Careful statistical approaches like factorial designs involving
multiple combinations must be used along with individual agent
controls in the experiments to optimize the doses of these multiple
agents for combination usage. The factorial design is a natural choice
for testing multiple treatment modalities in the same prevention set-
ting because it allows the assessment of the drug effect for each single
modality, as well as that of the combinations [50]. Factorial designs
are efficient in estimating the chemoprevention effect when there is a
positive interaction (synergistic effect) or no interaction between
tested agents. The interaction can be quantified and the chemopre-
ventive effects associated with paired modalities can also be estimated
[48]. If agents have different toxicity profiles, combination of the

agents (e.g., in a factorial design) can increase efficacy without in-
creasing toxicity. The Physicians’ Health Study (aspirin and beta-
carotene) and the Alpha-Tocopherol, Beta-Carotene Trial are few
examples of the successful implementation of factorial designs.
Collectively, the results presented here support further development
of GLAD and other multitargeted, multiagent combinations in chemo-
prevention and treatment of colon cancers.
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Figure W1. Effect of GLAD on inflammatory cytokines in serum samples from treated and untreated APCMin/+ mice as analyzed by
ELISA. All assayed cytokines except G-CSF and GM-CSF were decreased by GLAD.

Figure W2. Immunohistochemical staining for PCNA in intestinal tumors from APCMin/+ mice fed control diet or treated with GLAD.
A significant difference (P < .0001) was observed in proliferative index between GLAD-treated and control group polyps.



Table W1. The Effects of Individual and Dual Combinations of Chemopreventive Agents in APCMin/+ Mice.

Agents and Doses No. of SI
Polyps Control

No. of SI
Polyps Treated

% Efficacy*
(∼ % Inhibition)

Colon Polyps
Control

Colon Polyps
Treated

% Efficacy*
(∼ % Inhibition)

Reference

DFMO, 1% 42 24 42 – – – [37]
DFMO, 2% 45 21 53 3.5 3.2 8 [38]
DFMO, 0.5% 41 24 41 0.5 0.7 −40 [39]
DFMO, 0.5% 32 24 25 – – – [24]
Lipitor, 100 ppm 40 27 32 1.4 0.6 57 [33]
Licofelone, 150 ppm 48 17 64 1.8 0.5 72 [13]
Licofelone, 300 ppm 48 8 83 1.8 0 100 [13]
DFMO (0.5%) + celecoxib (500 ppm) 32 4 87 – – – [24]
Lipitor (100 ppm) + celecoxib (300 ppm) 40 6 85 1.4 0.1 92 [33]
DFMO (0.5%) + arginine 47 56 −19 0.9 0.5 44 [39]
DFMO (1%) + piroxicam (50 ppm) 42 11 11 – – – [37]

*The % efficacy of the agents determined by the authors on the basis of the published studies indicated in the references.




