430 research outputs found

    Current induced distortion of a magnetic domain wall

    Full text link
    We consider the spin torque induced by a current flowing ballistically through a magnetic domain wall. In addition to a global pressure in the direction of the electronic flow, the torque has an internal structure of comparable magnitude due to the precession of the electrons' spins at the "Larmor" frequency. As a result, the profile of the domain wall is expected to get distorted by the current and acquires a periodic sur-structure.Comment: 5 pages, 3 eps figure

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Diagnostic des systèmes techniques de transformation de l'igname en cossettes séchées au Bénin

    Get PDF
    Les pertes après-récolte des tubercules d'igname enregistrées dans les pays producteurs de l'Afrique de l'Ouest sont très importantes (40-50 % après 6 mois de stockage). Ces pertes sont dues à l'absence de moyens et méthodes de conservation appropriés. La transformation des tubercules en produits stables (cossettes, farine) est une solution à la conservation de l'igname frais. Cette technique permet, en outre, de réduire de plus de la moitié le poids de la matière à transporter. La méthode de fabrication des cossettes d'igname, connue depuis longtemps au Bénin et dans les pays voisins (Nigeria, Togo), permet de conserver le surplus des tubercules pour les utiliser pendant les périodes de soudure. Depuis plus d'une décennie, la farine de cossettes d'igname (Elubo) est passée dans les habitudes alimentaires des populations urbaines. L'importance de la demande actuelle nécessite que cette technique soit évaluée, améliorée et valorisée

    Magnetic patterning of (Ga,Mn)As by hydrogen passivation

    Full text link
    We present an original method to magnetically pattern thin layers of (Ga,Mn)As. It relies on local hydrogen passivation to significantly lower the hole density, and thereby locally suppress the carrier-mediated ferromagnetic phase. The sample surface is thus maintained continuous, and the minimal structure size is of about 200 nm. In micron-sized ferromagnetic dots fabricated by hydrogen passivation on perpendicularly magnetized layers, the switching fields can be maintained closer to the continuous film coercivity, compared to dots made by usual dry etch techniques

    Current Induced Fingering Instability in Magnetic Domain Walls

    Get PDF
    The shape instability of magnetic domain walls under current is investigated in a ferromagnetic (Ga,Mn)(As,P) film with perpendicular anisotropy. Domain wall motion is driven by the spin transfer torque mechanism. A current density gradient is found either to stabilize domains with walls perpendicular to current lines or to produce finger-like patterns, depending on the domain wall motion direction. The instability mechanism is shown to result from the non-adiabatic contribution of the spin transfer torque mechanism.Comment: 5 pages, 3 figures + supplementary material

    Theory of Current-Driven Domain Wall Motion: A Poorman's Approach

    Full text link
    A self-contained theory of the domain wall dynamics in ferromagnets under finite electric current is presented. The current is shown to have two effects; one is momentum transfer, which is proportional to the charge current and wall resistivity (\rhow), and the other is spin transfer, proportional to spin current. For thick walls, as in metallic wires, the latter dominates and the threshold current for wall motion is determined by the hard-axis magnetic anisotropy, except for the case of very strong pinning. For thin walls, as in nanocontacts and magnetic semiconductors, the momentum-transfer effect dominates, and the threshold current is proportional to \Vz/\rhow, \Vz being the pinning potential

    Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy

    Full text link
    The ferromagnetism of a thin GaMnAs layer with a perpendicular easy anisotropy axis is investigated by means of several techniques, that yield a consistent set of data on the magnetic properties and the domain structure of this diluted ferromagnetic semiconductor. The magnetic layer was grown under tensile strain on a relaxed GaInAs buffer layer using a procedure that limits the density of threading dislocations. Magnetometry, magneto-transport and polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality of this layer, in particular through its high Curie temperature (130 K) and well-defined magnetic anisotropy. We show that magnetization reversal is initiated from a limited number of nucleation centers and develops by easy domain wall propagation. Furthermore, MOKE microscopy allowed us to characterize in detail the magnetic domain structure. In particular we show that domain shape and wall motion are very sensitive to some defects, which prevents a periodic arrangement of the domains. We ascribed these defects to threading dislocations emerging in the magnetic layer, inherent to the growth mode on a relaxed buffer
    • …
    corecore