359 research outputs found

    Acidification effects on biofouling communities: winners and losers

    Get PDF
    How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, from 92% spirorbids, 3% ascidians and 4% sponges initially to 47% spirorbids, 23% ascidians and 29% sponges after 100days in acidified conditions (pH 7.7). In low pH, numbers of the spirorbid Neodexiospira pseudocorrugata were reduced x5 compared to controls. The two ascidians present behaved differently with Aplidium sp. decreasing x10 in pH 7.7, whereas Molgula sp. numbers were x4 higher in low pH than controls. Calcareous sponge (Leucosolenia sp.) numbers increased x2.5 in pH 7.7 over controls. The diatom and filamentous algal community was also more poorly developed in the low pH treatments compared to controls. Colonization of new surfaces likewise showed large decreases in spirorbid numbers, but numbers of sponges and Molgula sp. increased. Spirorbid losses appeared due to both recruitment failure and loss of existing tubes. Spirorbid tubes are comprised of a loose prismatic fabric of calcite crystals. Loss of tube materials appeared due to changes in the binding matrix and not crystal dissolution, as SEM analyses showed crystal surfaces were not pitted or dissolved in low pH conditions. Biofouling communities face dramatic future changes with reductions in groups with hard exposed exoskeletons and domination by soft-bodied ascidians and sponges.EU [227799, 00415/2010]; Natural Environment Research Council [bas0100036, bas0100025

    The influence of the biological pump on ocean chemistry:Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems

    Get PDF
    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this ‘biological pump’ have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long‐term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3‐dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom‐water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower‐than‐modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom‐water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has exerted a first‐order control on Earth system evolution across Phanerozoic time

    Climate Change and Trophic Response of the Antarctic Bottom Fauna

    Get PDF
    BACKGROUND: As Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere. METHODOLOGY/PRINCIPAL FINDINGS: We used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop approximately 41 Ma (million years ago), eliminated durophagous predators-teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)-from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, approximately 33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves. CONCLUSIONS/SIGNIFICANCE: Rapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other portions of the Antarctic coast. The differential responses of faunal components will reduce the endemic character of Antarctic subtidal communities, homogenizing them with nearshore communities at lower latitudes

    Spatial Geographic Mosaic in an Aquatic Predator-Prey Network

    Get PDF
    The geographic mosaic theory of coevolution predicts 1) spatial variation in predatory structures as well as prey defensive traits, and 2) trait matching in some areas and trait mismatching in others mediated by gene flow. We examined gene flow and documented spatial variation in crushing resistance in the freshwater snails Mexipyrgus churinceanus, Mexithauma quadripaludium, Nymphophilus minckleyi, and its relationship to the relative frequency of the crushing morphotype in the trophically polymorphic fish Herichthys minckleyi. Crushing resistance and the frequency of the crushing morphotype did show spatial variation among 11 naturally replicated communities in the Cuatro Ciénegas valley in Mexico where these species are all endemic. The variation in crushing resistance among populations was not explained by geographic proximity or by genetic similarity in any species. We detected clear phylogeographic patterns and limited gene flow for the snails but not for the fish. Gene flow among snail populations in Cuatro Ciénegas could explain the mosaic of local divergence in shell strength and be preventing the fixation of the crushing morphotype in Herichthys minckleyi. Finally, consistent with trait matching across the mosaic, the frequency of the fish morphotype was negatively correlated with shell crushing resistance likely reflecting the relative disadvantage of the crushing morphotype in communities where the snails exhibit relatively high crushing resistance

    Functional diversity of marine ecosystems after the Late Permian mass extinction event

    Get PDF
    Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic

    Drilling Predation on Serpulid Polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain

    Get PDF
    We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Lower Miocene Stratigraphy along the Panama Canal and Its Bearing on the Central American Peninsula

    Get PDF
    Before the formation of the Central American Isthmus, there was a Central American Peninsula. Here we show that southern Central America existed as a peninsula as early as 19 Ma, based on new lithostratigraphic, biostratigraphic and strontium chemostratigraphic analyses of the formations exposed along the Gaillard Cut of the Panama Canal. Land mammals found in the Miocene Cucaracha Formation have similar body sizes to conspecific taxa in North America, indicating that there existed a terrestrial connection with North America that allowed gene flow between populations during this time. How long did this peninsula last? The answer hinges on the outcome of a stratigraphic dispute: To wit, is the terrestrial Cucaracha Formation older or younger than the marine La Boca Formation? Previous stratigraphic studies of the Panama Canal Basin have suggested that the Cucaracha Formation lies stratigraphically between the shallow-marine Culebra Formation and the shallow-to-upper-bathyal La Boca Formation, the latter containing the Emperador Limestone. If the La Boca Formation is younger than the Cucaracha Formation, as many think, then the peninsula was short-lived (1–2 m.y.), having been submerged in part by the transgression represented by the overlying La Boca Formation. On the other hand, our data support the view that the La Boca Formation is older than the Cucaracha Formation. Strontium dating shows that the La Boca Formation is older (23.07 to 20.62 Ma) than both the Culebra (19.83–19.12 Ma) and Cucaracha (Hemingfordian to Barstovian North American Land Mammal Ages; 19–14 Ma) formations. The Emperador Limestone is also older (21.24–20.99 Ma) than the Culebra and Cucaracha formations. What has been called the “La Boca Formation” (with the Emperador Limestone), is re-interpreted here as being the lower part of the Culebra Formation. Our new data sets demonstrate that the main axis of the volcanic arc in southern Central America more than likely existed as a peninsula connected to northern Central America and North America for much of the Miocene, which has profound implications for our understanding of the tectonic, climatic, oceanographic and biogeographic history related to the formation of the Isthmus of Panama

    Of Asian Forests and European Fields: Eastern U.S. Plant Invasions in a Global Floristic Context

    Get PDF
    Background: Biogeographic patterns of species invasions hold important clues to solving the recalcitrant ‘who’, ‘where’, and ‘why ’ questions of invasion biology, but the few existing studies make no attempt to distinguish alien floras (all non-native occurrences) from invasive floras (rapidly spreading species of significant management concern), nor have invasion biologists asked whether particular habitats are consistently invaded by species from particular regions. Methodology/Principal Findings: Here I describe the native floristic provenances of the 2629 alien plant taxa of the Eastern Deciduous Forest of the Eastern U.S. (EUS), and contrast these to the subset of 449 taxa that EUS management agencies have labeled ‘invasive’. Although EUS alien plants come from all global floristic regions, nearly half (45%) have native ranges that include central and northern Europe or the Mediterranean (39%). In contrast, EUS invasive species are most likely to come from East Asia (29%), a pattern that is magnified when the invasive pool is restricted to species that are native to a single floristic region (25 % from East Asia, compared to only 11 % from northern/central Europe and 2 % from the Mediterranean). Moreover, East Asian invaders are mostly woody (56%, compared to just 23 % of the total alien flora) and are significantly more likely to invade intact forests and riparian areas than European species, which dominate managed or disturbed ecosystems. Conclusions/Significance: These patterns suggest that the often-invoked ‘imperialist dogma ’ view of global invasion

    Ecological Release and Venom Evolution of a Predatory Marine Snail at Easter Island

    Get PDF
    BACKGROUND:Ecological release is coupled with adaptive radiation and ecological diversification yet little is known about the molecular basis of phenotypic changes associated with this phenomenon. The venomous, predatory marine gastropod Conus miliaris has undergone ecological release and exhibits increased dietary breadth at Easter Island. METHODOLOGY/PRINCIPAL FINDINGS:We examined the extent of genetic differentiation of two genes expressed in the venom of C. miliaris among samples from Easter Island, American Samoa and Guam. The population from Easter Island exhibits unique frequencies of alleles that encode distinct peptides at both loci. Levels of divergence at these loci exceed observed levels of divergence observed at a mitochondrial gene region at Easter Island. CONCLUSIONS/SIGNIFICANCE:Patterns of genetic variation at two genes expressed in the venom of this C. miliaris suggest that selection has operated at these genes and contributed to the divergence of venom composition at Easter Island. These results show that ecological release is associated with strong selection pressures that promote the evolution of new phenotypes
    corecore