13 research outputs found

    The effects of electrode and catalyst selection on microfluidic fuel cell performance

    Get PDF
    A fuel cell can be best defined as an electrochemical converter of fuel and oxidant of chemical energy to electrical energy. The important components of micro fuel cells are the electrodes and catalysts because the kinetics and rates of the electrochemical reactions depend on their materials. All fuel cells consist of two electrodes: the anode, where fuel oxidation takes place, and the cathode, which is used to reduce the oxidants. The present review article highlights the use of a range of electrodes made up of different materials, a variety of catalysts that have been used in previous studies, and their fabrication materials and approaches. In this article, electrodes and catalysts are classified into two types based on the design approach applied to produce the micro fuel cell: micro fuel cell design and conventional assembly design. Most previous studies on fuel cells have demonstrated that the construction and position of the electrodes play crucial roles in improving the performance of micro fuel cells

    Preparation and characterization of PtRu/C and PtSn/c electrocatalysts using the citric acidic chemical reduction process for direct alcohol fuel cell (DAFC)

    No full text
    Neste trabalho, os sistemas de eletrocatalisadores platina-rutênio (PtRu/C) e platina-estanho (PtSn/C) suportados em carbono de alta área superficial XC72R (Cabot) foram preparados pela redução química de precursores metálicos em solução usando o ácido cítrico como agente redutor. Os eletrocatalisadores foram preparados em diferentes valores de pH, com o objetivo de obter as condições de sínteses mais otimizadas para cada um dos sistemas preparados. O método otimizado mostrou-se eficiente na redução e ancoragem de todos os metais presente em solução, sendo possível preparar tanto catalisadores com baixos teores de segundo metal (razão atômica entre Pt:M = 90:10) quanto catalisadores com altos teores de segundo metal (Pt:M = 50:50). Os eletrocatalisadores obtidos foram caracterizados por espectroscopia de energia dispersiva de raios X, difração de raios X e microscopia eletrônica de transmissão. A atividade frente a eletro-oxidação de metanol e etanol foi avaliada através de voltametria cíclica e cronoamperometria em célula eletroquímica. Para os catalisadores com melhores desempenhos eletroquímicos foram realizados experimentos em célula a combustível unitária alimentada diretamente por metanol ou etanol. O desempenho dos eletrocatalisadores preparados foi comparado com o desempenho dos eletrocatalisadores comerciais Pt50Ru50/C e Pt75Sn25/C da linha HP (High Performance) fornecidos pela E-TEK, considerados como referência nos estudos frente a eletro-oxidação de alcoóis. Para eletro-oxidação do metanol foram obtidos eletrocatalisadores com desempenho comparável ao E-TEK e para eletro-oxidação de etanol foram obtidos eletrocalisadores com desempenho superior aos catalisadores E-TEK.In this work, platinum ruthenium (PtRu/C) and platinum tin (PtSn/C) electrocatalysts were prepared by a chemical reduction process using citric acid as reducing agent and high surface area Vulcan Carbon XC72R (Cabot) as supports. The PtRu/C and PtSn/C catalysts were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction and transmission electron microscopy. The electro-oxidation of methanol and ethanol were studied at room temperature by cyclic voltammetry and chronoamperometry. Single fuel cell experiments were carried at 90 °C and the performance of the homemade electrocatalysts prepared by citric acid method in optimized conditions were compared with commercial Pt50Ru50/C and Pt75Sn25/C E-TEK HP (High Performance) catalysts. For methanols electro-oxidation electrocatalysts with comparable E-TEKs catalysts performance were obtained and for ethanols electro-oxidation electrocatalysts with superior performance than E-TEKs electrocatalysts were obtained

    Preparation and characterization of PtRu/C and PtSn/c electrocatalysts using the citric acidic chemical reduction process for direct alcohol fuel cell (DAFC)

    No full text
    Neste trabalho, os sistemas de eletrocatalisadores platina-rutênio (PtRu/C) e platina-estanho (PtSn/C) suportados em carbono de alta área superficial XC72R (Cabot) foram preparados pela redução química de precursores metálicos em solução usando o ácido cítrico como agente redutor. Os eletrocatalisadores foram preparados em diferentes valores de pH, com o objetivo de obter as condições de sínteses mais otimizadas para cada um dos sistemas preparados. O método otimizado mostrou-se eficiente na redução e ancoragem de todos os metais presente em solução, sendo possível preparar tanto catalisadores com baixos teores de segundo metal (razão atômica entre Pt:M = 90:10) quanto catalisadores com altos teores de segundo metal (Pt:M = 50:50). Os eletrocatalisadores obtidos foram caracterizados por espectroscopia de energia dispersiva de raios X, difração de raios X e microscopia eletrônica de transmissão. A atividade frente a eletro-oxidação de metanol e etanol foi avaliada através de voltametria cíclica e cronoamperometria em célula eletroquímica. Para os catalisadores com melhores desempenhos eletroquímicos foram realizados experimentos em célula a combustível unitária alimentada diretamente por metanol ou etanol. O desempenho dos eletrocatalisadores preparados foi comparado com o desempenho dos eletrocatalisadores comerciais Pt50Ru50/C e Pt75Sn25/C da linha HP (High Performance) fornecidos pela E-TEK, considerados como referência nos estudos frente a eletro-oxidação de alcoóis. Para eletro-oxidação do metanol foram obtidos eletrocatalisadores com desempenho comparável ao E-TEK e para eletro-oxidação de etanol foram obtidos eletrocalisadores com desempenho superior aos catalisadores E-TEK.In this work, platinum ruthenium (PtRu/C) and platinum tin (PtSn/C) electrocatalysts were prepared by a chemical reduction process using citric acid as reducing agent and high surface area Vulcan Carbon XC72R (Cabot) as supports. The PtRu/C and PtSn/C catalysts were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction and transmission electron microscopy. The electro-oxidation of methanol and ethanol were studied at room temperature by cyclic voltammetry and chronoamperometry. Single fuel cell experiments were carried at 90 °C and the performance of the homemade electrocatalysts prepared by citric acid method in optimized conditions were compared with commercial Pt50Ru50/C and Pt75Sn25/C E-TEK HP (High Performance) catalysts. For methanols electro-oxidation electrocatalysts with comparable E-TEKs catalysts performance were obtained and for ethanols electro-oxidation electrocatalysts with superior performance than E-TEKs electrocatalysts were obtained

    Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell

    No full text
    International audienceA passive silicon microfabricated direct methanol fuel cell employing a polymer anion exchange membrane has been identified as a promising integrable power supply for portable devices in the MEMS field. In this work the fabrication steps of the different components: silicon current collectors and membrane-electrode assembly (MEA), as well as the mounting approach and performance evaluation for the whole passive alkaline micro air-breathing direct methanol fuel cell (mu ADMFC) are shown. This system, with a small active area of 0.25 cm(2), was tested near of the real application conditions with totally passive fueling and at room temperature. Different MEA configurations and methanol and KOH concentrations were compared. Best performance was observed for the MEA with a previously sprayed catalytic layer on carbon cloth instead of the MEAs with the catalytic layer deposited directly onto the alkaline membrane. A maximum power density of 2.2 mW cm(-2) was achieved for 15 mu L of 1 M methanol + 4 M KOH fuel solution

    Heat transfer augmentation in rectangular micro channel covered with vertically aligned carbon nanotubes

    No full text
    An experimental heat transfer investigation was carried out to examine the influence of carbon nanotubes (CNTs) layer deposits on the convective heat transfer performance inside rectangular microchannels. Successful synthesis of vertically aligned CNTs was achieved using a catalytic vapor deposition (CVD) process on a silicon sample substrate. By varying the synthesis time, on average 6 μm and 20 μm thick layers of CNTs were made with surface roughness of (Sa = 1.062 μm, Sq = 1.333 μm) and (Sa = 0.717 μm, Sq = 0.954 μm) respectively. The external surface area of the samples increased 7 times compared to the bare silicon chip. The heat transfer performance of each sample was measured inside two rectangular microchannels with cross-section of 125 μm × 9 mm and 200 μm × 9 mm. For the 125 μm channel height, the 6 μm and 20 μm thick layer of CNTs resulted in 12% and 26% increase in pressure drop respectively. The pressure drop obtained from the 200 μm channel height show a similar trend with an increase of 6% and 16.4% for 6 μm and 20 μm CNTs layer thickness respectively. An average heat transfer enhancement of 19% and 74% is obtained inside the 125 μm height microchannel with 6 μm and 20 μm CNTs layer thickness respectively. Whereas, the average heat transfer enhancement of 22% and 62% are obtained inside the 200 μm channel with respective CNTs layer thicknesses of 6 μm and 20 μm. Enhancements are attributed to an increase in surface area and effective thermal conductivity inside the thermal boundary layer. However, the frictional heating (viscous dissipation) of a particular nanostructured sample increases with a decrease in channel height. This difference in channel size results in stronger competition between heat transfer enhancement potential that can be achieved by the deposited surface and the decrease in Nusselt number due to viscous dissipation
    corecore