466 research outputs found

    Cross-talk between signaling pathways leading to defense against pathogens and insects

    Get PDF
    In nature, plants interact with a wide range of organisms, some of which are harmful (e.g. pathogens, herbivorous insects), while others are beneficial (e.g. growth-promoting rhizobacteria, mycorrhizal fungi, and predatory enemies of herbivores). During the evolutionary arms race between plants and their attackers, primary and secondary immune responses evolved to recognize common or highly specialized features of microbial pathogens (Chisholm et al., 2006), resulting in sophisticated mechanisms of defense

    Functional outcome is tied to dynamic brain states after mild to moderate traumatic brain injury

    Get PDF
    The current study set out to investigate the dynamic functional connectome in relation to long-term recovery after mild to moderate traumatic brain injury (TBI). Longitudinal resting-state functional MRI data were collected (at 1 and 3 months postinjury) from a prospectively enrolled cohort consisting of 68 patients with TBI (92% mild TBI) and 20 healthy subjects. Patients underwent a neuropsychological assessment at 3 months postinjury. Outcome was measured using the Glasgow Outcome Scale Extended (GOS-E) at 6 months postinjury. The 57 patients who completed the GOS-E were classified as recovered completely (GOS-E = 8; n = 37) or incompletely (GOS-E < 8; n = 20). Neuropsychological test scores were similar for all groups. Patients with incomplete recovery spent less time in a segregated brain state compared to recovered patients during the second visit. Also, these patients moved less frequently from one meta-state to another as compared to healthy controls and recovered patients. Furthermore, incomplete recovery was associated with disruptions in cyclic state transition patterns, called attractors, during both visits. This study demonstrates that poor long-term functional recovery is associated with alterations in dynamics between brain networks, which becomes more marked as a function of time. These results could be related to psychological processes rather than injury-effects, which is an interesting area for further work. Another natural progression of the current study is to examine whether these dynamic measures can be used to monitor treatment effects

    A systematic SNP selection approach to identify mechanisms underlying disease aetiology: Linking height to post-menopausal breast and colorectal cancer risk

    Get PDF
    Data from GWAS suggest that SNPs associated with complex diseases or traits tend to co-segregate in regions of low recombination, harbouring functionally linked gene clusters. This phenomenon allows for selecting a limited number of SNPs from GWAS repositories for large-scale studies investigating shared mechanisms between diseases. For example, we were interested in shared mechanisms between adult-attained height and post-menopausal breast cancer (BC) and colorectal cancer (CRC) risk, because height is a risk factor for these cancers, though likely not a causal factor. Using SNPs from public GWAS repositories at p-values < 1 × 10-5 and a genomic sliding window of 1 mega base pair, we identified SNP clusters including at least one SNP associated with height and one SNP associated with either post-menopausal BC or CRC risk (or both). SNPs were annotated to genes using HapMap and GRAIL and analysed for significantly overrepresented pathways using ConsensuspathDB. Twelve clusters including 56 SNPs annotated to 26 genes were prioritised because these included at least one height- and one BC risk- or CRC risk-associated SNP annotated to the same gene. Annotated genes were involved in Indian hedgehog signalling (p-value = 7.78 × 10-7) and several cancer site-specific pathways. This systematic approach identified a limited number of clustered SNPs, which pinpoint potential shared mechanisms linking together the complex phenotypes height, post-menopausal BC and CRC

    Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    Get PDF
    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP

    How Chromatin Is Remodelled during DNA Repair of UV-Induced DNA Damage in Saccharomyces cerevisiae

    Get PDF
    Global genome nucleotide excision repair removes DNA damage from transcriptionally silent regions of the genome. Relatively little is known about the molecular events that initiate and regulate this process in the context of chromatin. We've shown that, in response to UV radiation–induced DNA damage, increased histone H3 acetylation at lysine 9 and 14 correlates with changes in chromatin structure, and these alterations are associated with efficient global genome nucleotide excision repair in yeast. These changes depend on the presence of the Rad16 protein. Remarkably, constitutive hyperacetylation of histone H3 can suppress the requirement for Rad7 and Rad16, two components of a global genome repair complex, during repair. This reveals the connection between histone H3 acetylation and DNA repair. Here, we investigate how chromatin structure is modified following UV irradiation to facilitate DNA repair in yeast. Using a combination of chromatin immunoprecipitation to measure histone acetylation levels, histone acetylase occupancy in chromatin, MNase digestion, or restriction enzyme endonuclease accessibility assays to analyse chromatin structure, and finally nucleotide excision repair assays to examine DNA repair, we demonstrate that global genome nucleotide excision repair drives UV-induced chromatin remodelling by controlling histone H3 acetylation levels in chromatin. The concerted action of the ATPase and C3HC4 RING domains of Rad16 combine to regulate the occupancy of the histone acetyl transferase Gcn5 on chromatin in response to UV damage. We conclude that the global genome repair complex in yeast regulates UV-induced histone H3 acetylation by controlling the accessibility of the histone acetyl transferase Gcn5 in chromatin. The resultant changes in histone H3 acetylation promote chromatin remodelling necessary for efficient repair of DNA damage. Recent evidence suggests that GCN5 plays a role in NER in human cells. Our work provides important insight into how GG-NER operates in chromatin

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.

    Get PDF
    The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities

    Configurations of mother-child and father-child attachment as predictors of internalizing and externalizing behavioral problems: An individual participant data (IPD) meta-analysis

    Get PDF
    An unsettled question in attachment theory and research is the extent to which children's attachment patterns with mothers and fathers jointly predict developmental outcomes. In this study, we used individual participant data (IPD) meta-analysis to assess whether early attachment networks with mothers and fathers are associated with children's internalizing and externalizing behavioral problems. Following a pre-registered protocol, data from 9 studies and 1,097 children (mean age: 28.67 months) with attachment classifications to both mothers and fathers were included in analyses. We used a linear mixed effects analysis to assess differences in children's internalizing and externalizing behavioral problems as assessed via the average of both maternal and paternal reports based on whether children had two, one, or no insecure (or disorganized) attachments. Results indicated that children with an insecure attachment relationship with one or both parents were at higher risk for elevated internalizing behavioral problems compared with children who were securely attached to both parents. Children whose attachment relationships with both parents were classified as disorganized had more externalizing behavioral problems compared to children with either one or no disorganized attachment relationship with their parents. Across attachment classification networks and behavioral problems, findings suggest (a) an increased vulnerability to behavioral problems when children have insecure or disorganized attachment to both parents, and (b) that mother-child and father-child attachment relationships may not differ in the roles they play in children's development of internalizing and externalizing behavioral problems
    • …
    corecore