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Abstract

The current study set out to investigate the dynamic functional connectome in relation

to long-term recovery after mild to moderate traumatic brain injury (TBI). Longitudinal

resting-state functional MRI data were collected (at 1 and 3 months postinjury) from a

prospectively enrolled cohort consisting of 68 patients with TBI (92% mild TBI) and 20

healthy subjects. Patients underwent a neuropsychological assessment at 3 months

postinjury. Outcome was measured using the Glasgow Outcome Scale Extended (GOS-

E) at 6 months postinjury. The 57 patients who completed the GOS-E were classified

as recovered completely (GOS-E = 8; n = 37) or incompletely (GOS-E < 8; n = 20). Neu-

ropsychological test scores were similar for all groups. Patients with incomplete recov-

ery spent less time in a segregated brain state compared to recovered patients during

the second visit. Also, these patients moved less frequently from one meta-state to

another as compared to healthy controls and recovered patients. Furthermore, incom-

plete recovery was associated with disruptions in cyclic state transition patterns, called

attractors, during both visits. This study demonstrates that poor long-term functional

recovery is associated with alterations in dynamics between brain networks, which

becomes more marked as a function of time. These results could be related to psycho-

logical processes rather than injury-effects, which is an interesting area for further work.

Another natural progression of the current study is to examine whether these dynamic

measures can be used to monitor treatment effects.

K E YWORD S

brain dynamics, fMRI, functional connectivity, mild traumatic brain injury, networks, outcome,

recovery

1 | INTRODUCTION

Traumatic brain injury (TBI), and especially mild TBI (mTBI), affects mil-

lions of people around the world each year (Gardner & Yaffe, 2015).

Approximately 30–40% of patients with mTBI do not fully recover at

6 months postinjury, although rates vary, depending among other

things on the selected cutoff value for good recovery (McMahon et al.,

2014; van der Naalt et al., 2017). Various studies have been published

on prediction of functional outcome after mild and moderate TBI

(Einarsen et al., 2018; Jacobs et al., 2010; Lingsma et al., 2015; van der

Naalt et al., 2017; van der Naalt, van Zomeren, Sluiter, & Minderhoud,

1999). Many factors (demographic, injury-related, radiological, andAndrew Mayer and Joukje van der Naalt shared joint senior authorship.
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psychological) have been identified as important predictors of outcome

after TBI. Interestingly, measurement of psychological factors early

after injury has been shown to add significantly to the prediction of

outcome (van der Naalt et al., 2017). Despite these studies, there is still

a paucity of research on the actual neural mechanisms underlying

recovery after TBI. Many functional MRI (fMRI) studies have reported

relationships between persistent symptoms and neural networks

(Mayer, Mannell, Ling, Gasparovic, & Yeo, 2011; Palacios et al., 2017;

van der Horn et al., 2017; Wilson, Pettigrew, & Teasdale, 1998). How-

ever, the neural basis of functional outcome, such as that measured

using the Glasgow Outcome Scale Extended (GOS-E), may be different.

To the best of our knowledge, this topic has not yet been thoroughly

investigated.

Studying separate brain areas and networks is still at the center of

gravity in resting-state fMRI research, while results vary extensively

across studies (Mayer, Bellgowan, & Hanlon, 2015). In fact, various

research has shown that traumatic brain injury, and mTBI in particular,

may be a disorder of global rather than local brain connectivity, with

affected local brain areas being quite heterogeneous (Eierud et al.,

2014; Kaushal et al., 2019; Pandit et al., 2013; van der Horn et al.,

2016). Therefore, by focusing on separate brain areas, one may not

fully apprehend the neural mechanisms related to recovery. This

approach also obligates researchers to apply multiple comparison cor-

rections, which may give rise to type II errors, especially in such a het-

erogeneous condition as mTBI (Mayer et al., 2015). Additionally, up

until now, most studies have focused on static functional connectivity

(connectivity between regions) or static functional network connectiv-

ity (FNC, connectivity between temporally coherent networks) mea-

sures, while there is preliminary evidence showing that time-related

patterns of FNC (i.e., dynamic FNC) may provide more detailed infor-

mation about injury effects and recovery after TBI (Hou et al., 2019;

van der Horn et al., 2016; Vergara, Mayer, Kiehl, & Calhoun, 2018).

The brain's neural landscape is a dynamic system, which changes its

configuration in response to ongoing cognitive and emotional

demands (Du, Fu, & Calhoun, 2018). Therefore, it may be right to

assume that neurological and psychological recovery after TBI is cap-

tured more accurately using dynamic instead of static connectivity

measures. Furthermore, the neural underpinnings of recovery may

change as a function of time, and may not be fully revealed using only

a single brain scan. To the best of our knowledge, no previous study

has applied dynamic functional connectivity analyses to longitudinal

fMRI data of patients with mild to moderate TBI.

In the current longitudinal resting-state fMRI study, patients with

mild to moderate TBI were scanned on average 1 and 3 months post-

injury. The main objective of the study was to investigate whether

specific alterations in static and dynamic functional network connec-

tivity explain poor long-term functional outcome at 6 months post-

TBI, as measured with the GOS-E. In addition, it was questioned

whether neural patterns associated with recovery would become

more apparent with the passing of time, and whether longitudinal pat-

terns of connectivity are informative of outcome.

2 | METHODS

2.1 | Participants

Sixty-eight patients with mild (n = 63; 92.6%), or moderate (n = 5;

7.4%) TBI were prospectively enrolled between March 2013 and

February 2015 at a level 1 trauma-center in the Netherlands

(University Medical Center Groningen). Mild TBI was defined by loss

of consciousness of maximally 30 min, a Glasgow Coma Scale (GCS)

score of 13–15 afterward, and a period of posttraumatic amnesia

(PTA) no longer than 24 hr according to the American Congress of

Rehabilitation Medicine criteria (Kayd et al., 1993). Moderate TBI was

defined by loss of consciousness of 30 min or more, a GCS score of

9–12, or posttraumatic amnesia lasting more than 24 hr (Einarsen

et al., 2018; Godoy, Rubiano, Rabinstein, Bullock, & Sahuquillo, 2016;

Malec et al., 2007). The majority of patients sustained their injuries

due to traffic accidents and/or falls. Fourteen patients (nine mTBI and

all moderate TBI) had lesions on computed tomography (CT) scans

made at time of admission to the emergency department, with one

mTBI patient requiring neurosurgery to evacuate an epidural hema-

toma. Supporting Information S1 contains a table with lesion charac-

teristics for this subgroup of patients.

Exclusion criteria for this fMRI-study were neurological or psychi-

atric comorbidity, hospital admission for prior TBI, drug or alcohol

abuse, insufficient comprehension of the Dutch language, intellectual

disability, and contraindications for MRI (any implanted ferromagnetic

devices and objects, pregnancy, and claustrophobia). In addition to the

patient-group, 20 healthy controls (HC) without a history of TBI were

enrolled. The HC-group was matched to the TBI-group with respect

to age, biological sex, education, and handedness.

The study was approved by the local Medical Ethics committee of

the University Medical Center Groningen. All participants provided

written informed consent. Study procedures were conducted

according to the declaration of Helsinki. Part of the data was used in

previous analyses (van der Horn, Liemburg, et al., 2016).

2.2 | Clinical measures

The main purpose of this study was to examine FNC related to out-

come after TBI. At 6 months postinjury, functional outcome was

determined using the GOS-E, which is an eight-point outcome mea-

sure (8 = upper good recovery; 7 = lower good recovery; 6 = upper

moderate disability; 5 = lower moderate disability; 4 = upper severe

disability; 3 = lower severe disability; 2 = vegetative state; and

1 = death) (Wilson et al., 1998). The GOS-E interview contains ques-

tions about consciousness, independence at and outside home, work,

social and leisure activities, and family and friendships. For analyses, a

dichotomy was made between complete (CR; GOS-E = 8), and incom-

plete recovery (ICR; GOS-E ≤ 7). In addition to the GOS-E, persistent

posttraumatic symptoms were measured using the Head Injury Symp-

tom Checklist at 6 months postinjury (de Koning et al., 2016; van der

Naalt et al., 1999).
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At 3 months postinjury (at the time of the follow-up scan), a neu-

ropsychological assessment was performed comprising: the

Trailmaking test A (processing speed) and B (executive functioning;

Reitan & Wolfson, 1985), Stroop I test (verbal speed; Jammes &

Hammes, 1971), Digit Span test backwards (working memory;

Wechsler, 2001), Dutch version of the Rey Auditory Verbal Learning

test (RAVLT; immediate and delayed verbal memory; Rey, 1964), and

the Controlled Oral Word Association test (COWAT; verbal fluency;

Benton, de Hamsher, & Sivan, 1983). These tests encompass cognitive

domains that match symptoms that are often reported after mTBI.

Raw scores were used for analyses, corrected for age and education.

To account for underachievement, the Amsterdam Short Term Mem-

ory test (ASTM; cutoff <85; Schmand, de Sterke, & Lindeboom, 1999),

and a brief version (neurological impairment and amnestic disorders

subscales) of the Structured Inventory of Malingered Symptomatology

(SIMS; cutoff >5; Smith & Burger, 1997) were also administered.

2.3 | MRI-acquisition protocol

Patients were scanned at approximately 4 weeks (M = 37.2 days; range

22–69), and at 3 months (M = 96.5 days; range 61–207) postinjury. Of

these 68, 63 patients (92.6%) returned for follow-up scanning. The

average time between first and second scan was 59 days. Healthy con-

trols were scanned once. All MRI-scans were collected using a 3 Tesla

Philips Intera Achieva MRI-scanner (Philips Medical Systems, Best, The

Netherlands) equipped with a 32 channel SENSE head-coil. An anatom-

ical (T1-weighted) image was made for referencing purposes (repetition

time [TR] 9 ms, echo time [TE] 3.5 ms, flip angle 8�, field of view [FOV]

256 × 232 × 170 mm, reconstructed voxel size 1 × 1 × 1 mm). For

resting-state fMRI, 300 T2*-weighted volumes were acquired with

slices aligned to the anterior commissure (AC)–posterior commissure

(PC) plane in descending order (TR 2000 ms, TE 20 ms, FOV

224 × 224 × 136.5 mm, reconstructed voxel size 3.5 × 3.5 × 3.5 mm).

Subjects were instructed to keep their eyes closed and to stay awake

during scanning.

2.4 | Functional MRI preprocessing

Preprocessing was performed using statistical Parametric Mapping

(SPM12; Wellcome Department, University College London, England)

implemented in MATLAB (version 2017b; MathWorks, Natick, MA).

Volumes were reoriented to the AC, slice time corrected, realigned,

coregistered to the T1-anatomical image, normalized to the Montreal

Neurological Institute (MNI) space using an echo planar imaging (EPI)-

template (3 × 3 × 3 mm isotropic voxels) (Calhoun et al., 2017), and

smoothed using a 8 mm full width at half maximum (FWHM) kernel.

The first five volumes were discarded to account for lack of

T1-equilibrium. Before smoothing, voxel time courses were orthogo-

nalized with respect to the six realignment parameters, their deriva-

tives, and to linear, quadratic, and cubic trends (Vergara, Mayer,

Damaraju, & Calhoun, 2017; Vergara, Mayer, Damaraju, Hutchison, &

Calhoun, 2017).

Two patients and one HC showed extreme head movement

(defined as >3 SD on at least 2/6 of the mean framewise displacement

[FD] measures; Mayer, Franco, Ling, & Cañive, 2007; Mayer, Ling,

et al., 2015). To reduce the possibility of spurious findings, the healthy

subject with extreme head movement was excluded from all analyses.

As the two patients showed extreme movement only during follow-

up scanning, they were excluded from the follow-up analyses only.

Total mean FD did not significantly differ between recovery and HC

subgroups (one-way ANOVA for patients with ICR, CR and HC,

p = .36). Supporting Information S2 contains the mean FD values for

all subjects.

2.5 | Independent component analysis

The Group ICA of fMRI Toolbox (GIFT) version 4.0b (implemented in

MATLAB) was used to perform group-information guided independent

component analysis (GIG-ICA; Calhoun, Adali, Pearlson, & Pekar, 2001;

Du et al., 2016; Du & Fan, 2013). Seventy components from an inde-

pendent study on mTBI were used as templates for gig-ICA (Vergara

et al., 2018). Back-reconstruction using gig-ICA has been shown to

result in increased sensitivity to group-differences as compared to spa-

tiotemporal regression (Salman et al., 2019). The end result of GIG-ICA

was a set of 48 resting-state networks (RSNs) that were organized into

nine network domains: subcortical (SBC), cerebellum (CER), auditory

(AUD), sensorimotor (SEN), visual (VIS), salience network (SAL), default

mode network (DMN), executive control network (ECN), and language

(LAN). Figure 1 displays the functional network analyses pipeline.

2.6 | Static FNC analyses

Static FNC was computed using GIFT. First, RSN's time courses were des-

piked using the Analysis of Functional NeuroImages (AFNI) 3D Despike

software (AFNI;, 1995), and filtered using a fifth-order Butterworth ban-

dpass filter (0.01–0.15 Hz). Subsequently, pairwise correlations were

computed, resulting in 1128 correlation values (48*[48–1]/2), which were

transformed using a Fisher's Z-transform prior to statistical analyses.

2.7 | Dynamic FNC analyses

The dynamic FNC toolbox v1.0a in GIFT was used to perform

dynamic FNC (dFNC) analyses. Time courses were despiked and fil-

tered using a fifth-order Butterworth bandpass filter (0.01–0.15 Hz),

and pairwise correlations were calculated using a sliding window

approach for rectangular windows (22 TR = 44 s) convolved with a

Gaussian (σ = 3TR) in steps of 1 TR, resulting in 273 windowed corre-

lation matrices (Damaraju et al., 2014; Miller et al., 2016; Vergara,

Abrol, & Calhoun, 2019). This procedure was followed by computation

of average sliding window correlations (ASWC) using a window of

25 TR (50 s) in MATLAB, resulting in 248 final correlation matrices

with each containing 1,128 component pairs (Vergara, Abrol, & Cal-

houn, 2019). Subsequently, k-means clustering was performed (maxi-

mum iterations of 4,000, correlation distance method, 33 replicates)

using both the ASWC as well as their first derivatives of all subjects
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(derivatives were normalized for every subject to match the variance

of the correlations). Including the first derivatives has been shown to

result in higher sensitivity for capturing group-differences in dynamic

FNC (Espinoza et al., 2019). To estimate the optimal number of clus-

ters (k), the following cluster validity indexes were computed for a

range of k (1–10) using GIFT: Elbow method, Bayesian information

criterion (BIC), Dunn's index, Gap statistic, Akaike information crite-

rion (AIC), and Silhouette method (Supporting Information S1). The

optimal number of clusters was determined to be five, which was the

mean of the optimal numbers for aforementioned cluster validity indi-

ces rounded to the nearest integer greater than or equal to that value.

From now on, clusters will be referred to as dFNC states.

2.8 | State clustering analyses

The k-means clustering algorithm provides a state-membership index

for every correlation window for each subject (i.e., the cluster that

most closely matches the dFNC matrix of that window; this method is

also referred to as hard clustering). These indices were used to calcu-

late mean dwell time (MDT; i.e., average time spent in a particular

state before changing to another state), fraction of time spent per

state (FT; i.e., time spent in one state divided by the total number of

windows), and number of transitions (NT; i.e., how often a subject

changes states) for every subject (using GIFT; Calhoun, Miller,

Pearlson, & Adalı, 2014). Note that it can occur that a subject does

not visit at certain state, in this case mean dwell time, and fraction of

time spent were classified as zero for that particular state.

2.9 | Meta-state analyses

These additional analyses provide a more detailed view of dFNC states

(Miller et al., 2016). Meta-state analysis was run in GIFT, again by using a

k-means clustering algorithm on ASWC together with the first deriva-

tives (maximum iterations of 4,000, correlation distance method, 33 repli-

cates). Subsequently, weighted k-means time courses were computed

using the k-means correlation patterns. Instead of assigning one particu-

lar state-membership index to a particular dFNC window, the distance of

a particular dFNC matrix to every of the five states is computed (i.e., soft

clustering). The resulting five-element vector is called a meta-state (note

that because for every window a vector reflects the distances of that

F IGURE 1 Functional network analysis pipeline
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window to every state, no zero values are present in these meta-state

vectors). Measures similar to those that were mentioned earlier were cal-

culated using these meta-states (i.e., state span, number of state-

changes). In addition, the total distance traveled through the state-space

(sum of distances between successive meta-states), the number of states

(i.e., unique meta-states), and the number of hub-states (a unique meta-

state that is visited ≥4 times throughout the windows) were computed.

2.10 | State-transition analyses

The ASWC and their first-order derivatives were used for state-

transition analysis, which estimates the probability of transitioning

from one state to another. Mathematically, state transitions can be

written as P{Xnext| Xprev; Xnext 6¼ Xprev}, with Xprev representing the k-

means state membership index before transition, and Xnext rep-

resenting the one after transition (Vergara et al., 2019). These probabili-

ties were estimated in a group-wise manner using the membership-

indices per window. The resulting probability matrices were analyzed

for the presence and disruption of cyclic patterns. Under normal cir-

cumstances, a transition is followed by another transition that returns

to the initial membership. For example, a transition from membership

one to membership two (1 ! 2) is followed by a two to one transition

(2 ! 1). We call this set of transitions an attractor. Attractors consist of

connectivity patterns that oscillate, or in other words, dynamic FNC

states that will transit to each other with the highest probability. States

within an attractor have identical ASWC, but different derivatives,

reflecting different patterns of increasing and decreasing (oscillating)

functional connectivity over time. These time-varying patterns of con-

nectivity strength have been shown to orbit around a centroid, which

is the center of an attractor. Supporting Information S1 contains a

detailed summary of the state transition analyses.

In addition to the patient subgroups, the group of HC was exam-

ined to identify healthy transitions between states.

2.11 | Statistical analyses

For clinical measures, analyses were performed using the Statistical

Product and Service Solutions (SPSS, version 20, IBM Corp., Armonk,

NY). Student's t tests and analyses of variance (ANOVA) and covari-

ance (ANCOVA) were used for group comparisons of continuous data.

For neuropsychological data, age and education were included as

covariates. For nominal and ordinal data, Chi-square tests were used.

Alpha was set at 0.05 (two-tailed).

Since there was a significant difference in age between patients

with CR and ICR, variance related to age was regressed out of the data

prior to performing statistical analyses of network measures. Regarding

transition analyses, estimated probabilities rely on data from a whole

group and there is no subject-wise information. For these reasons, age

could not be regressed out of these data. Therefore, the two groups of

patients with ICR (n = 20 and 20 for Visits 1 and 2, respectively) and

CR (n = 29 and 27) were compiled in such a way that they were age-

matched at both visits, with sample sizes as large as possible. We also

ensured groups remained gender- and education-matched.

Permutation tests were performed using MATLAB (10,000 permu-

tations) to compare static connectivity values (correlation values of

each component-pair), state clustering and meta-state measures. Per-

mutation tests for one-way ANOVA were used to test for the presence

of any group-differences between HC, patients with CR, and patients

with ICR (α = 0.05, two-tailed; Anderson, 2001). In case of a significant

group-effect, post hoc pairwise permutation tests were performed. To

control type I errors, FDR-corrections were applied. For static FNC,

corrections were applied for the number of component pairs (i.e., 1,128

tests). For the dynamic measures MDT and FT, corrections were

applied for the number of states (i.e., five tests). To assess longitudinal

effects, paired permutation tests were performed for the CR and ICR

groups, and delta-values expressing longitudinal change were compared

between groups using two-sample permutation test.

In addition to testing for statistical significance, eta-squared (η2;

for ANOVA), and Hedges’ g (for two-sample comparisons) effect sizes

were computed using the Measures of Effect Size Toolbox in

MATLAB (Hentschke & Stüttgen, 2011).

To examine the influence of measures of injury severity (GCS

and/or PTA) on our findings, group analyses were conducted with and

without inclusion of patients with moderate TBI. Supplementary ana-

lyses were conducted to assess the influence of CT-lesions by compar-

ing network measures between patients with and without CT-lesions.

3 | RESULTS

3.1 | Participants’ characteristics

A total of 57 patients (84%) completed the GOS-E (37 with CR and

20 with ICR), and 54 patients (79%) of these patients were included in

the longitudinal analyses (34 with CR and 20 with ICR).

Table 1 lists demographic and neuropsychological test scores for

patients with ICR, CR, and HC. Age was significantly different between

patients with CR and ICR (M = 35.1 vs. 44.3; p = .024; t = 2.32). Gender

and education were similar for both groups. Mean GOS-E-score for

patients with ICR was 6.2 (range 5–7). Number of symptoms for

patients with CR (M = 3.2 [0–14]) and ICR (M = 8.4 [3–18]) differed sig-

nificantly at 6 months postinjury (p < .0001; t = 4.49). It has to be

noticed that despite full recovery, patients with CR may still report

symptoms (e.g., 15 patients still reported 3 or more symptoms).

Our previous work has shown that posttraumatic symptoms are

not related to microhemorrhagic lesions on T2-gradient echo and

susceptibility-weighted imaging scans (van der Horn, de Haan, Spikman,

de Groot, & van der Naalt, 2018). In the current study, outcome was

not related to the number of microhemorrhagic lesions in patients who

did not have lesions on CT (i.e., uncomplicated mTBI, ICR vs. CR:

p = .75, t = 0.32).

3.2 | Static FNC analyses

The mean static FNC matrices for subgroups (HC, ICR, and CR) are

depicted in Figure 2. In all matrices, it is noticeable that networks for

sensorimotor, visual and auditory processing (CER, AUD, SEN, VIS)
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TABLE 1 Participant characteristics

ICR (n = 20) CR (n = 37) HC (n = 19) p-value; effect size

Age, years 44.3 (22–61) 35.1 (19–64) 35.9 (18–61) .06; F = 2.89

Sex, % male 60 76 68 .47; χ2 = 1.53

Education level, median (range)a 5.5 (4–7) 6 (2–7) 6 (5–7) .45; χ2 = 7.84

GCS-score, median (range) 14.5 (9–15) 15 (13–15) N/A .24; χ2 = 4.23

Days between injury and first visit 36.3 (25–69) 36 (22–67) N/A .93; t = 0.09

Days between injury and second visit 99.7 (61–207) 93.5 (76–127) N/A .31; t = 1.03

Percentage (n) with moderate TBI 15 (3) 3 (1) N/A .08; χ2 = 3.01

Percentage (n) with CT-lesions 25 (5) 16 (6) N/A .42; χ2 = 0.64

Neuropsychological testsb n = 16 n = 31 n = 18

TMT-A 28.1 (14–49) 28.7 (14–74) 26.9 (12–43) .61; F = 0.50

TMT-B 58.5 (34–99) 57.1 (27–115) 60.3 (28–114) .70; F = 0.37

Stroop-I 45.5 (30–60) 45.5 (31–72) 45.2 (26–71) .71; F = 0.34

Digit-span backwards 5.6 (3–9) 5.2 (2–8) 5.3 (3–8) .56; F = 0.58

RAVLT

Immediate 44.8 (17–56) 47.6 (31–69) 47.4 (32–71) .99; F = 0.01

Delayed 9.3 (4–15) 10.0 (2–15) 9.9 (3–15) .98; F = 0.02

COWAT 36.4 (20–61) 38 (11–59) 41.8 (21–62) .53; F = 0.65

Note: Values are expressed as mean (range), unless stated otherwise. All statistical analyses for (raw) neuropsychological test scores included age and

education level as covariates.

Abbreviations: COWAT, Controlled Oral Word Association Test; CR, complete recovery; HC, healthy controls; ICR, incomplete recovery; MRI, Magnetic

Resonance Imaging; N/A, not applicable; GCS, Glasgow Coma Score; RAVLT, Rey Auditory Verbal Learning test; TMT, Trailmaking test.
aEducation level was based on a Dutch classification system, according to Verhage (1964), ranging from 1 to 7 (highest).
bSubjects who underachieved based on the SIMS and ASTM tests were excluded.

F IGURE 2 Mean static FNC matrices for patients with ICR, CR, and HC
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are strongly intra- and inter-connected, as are networks for higher

cognitive processing (SAL, DMN, ECN), while between these two sets

of domains there are mostly anti-correlations.

A permutation test for one-way ANOVA revealed several group-

effects, however, differences for none of the component-pairs sur-

vived FDR-corrections during post hoc group comparisons. There

were no significant longitudinal effects within the ICR nor CR group.

The matrices containing the log-transformed uncorrected p values

with sign of the associated group differences show a trend toward

weaker correlations within and between networks for sensorimotor,

visual and auditory processing (CER, AUD, SEN, and VIS) in patients

with ICR (particularly during the second visit) compared to CR and

HC, while these networks were more strongly interconnected with

networks for higher cognitive processing (SAL, DMN, ECN; Figure 3).

Supporting Information S1 contains additional analyses comparing

patients with and without lesions on CT.

3.3 | Dynamic FNC states

Cluster centroids for ASWC as well as the first derivatives for every

of the five dFNC states are depicted in Figure 4. It is evident that

state one and two show similar ASWC patterns, with mostly anti-

correlations between the CER/AUD/SEN/VIS domains on the one

hand, and the SAL/DMN/ECN on the other, resembling the segre-

gated static FNC patterns. Interestingly, one DMN component (poste-

rior cingulate) and two ECN components (superior parietal) in states

one and two show positive correlations with the CER/AUD/SEN/VIS

domains. States one and two exhibit opposite derivative patterns,

reflecting either increasing or decreasing correlations over time. The

ASWC matrices for States 3, 4, and 5 look similar, with higher

between-domain correlations as compared to States 1 and 2; their

derivatives show different patterns. Supporting Information S3 con-

tains ASWC- and derivative-matrices for every state for patients with

ICR and CR (both visits), and HC.

3.4 | State clustering analyses

Permutation ANOVA revealed a group-effect regarding MDT

(p = .041, F = 3.31, η2 = .09) and FT (p = .045, F = 3.19, η2 = .08) for

State 2 during the second visit. Post hoc tests showed that FT for

State 2 was significantly lower in patients with ICR compared to

patients with CR (p = .007, g = −0.78; Figure 5). This effect was also

observed at trend-level for MDT (p = .015, g = −0.7, pFDR = .075). No

statistically significant differences in MDT or FT were found between

either of the patient subgroups and HC. There was a trend toward a

significant difference in delta (Visit 1 − Visit 2) regarding MDT for

State 1 between patients with ICR and CR (p = .013; g = 0.71;

pFDR = .063); however, within these groups there were no longitudinal

changes (p = .08 and .11 for ICR and CR, respectively). There were no

significant effects for NT. No significant group-differences or trends

toward significance were found for the first visit (with small effect

sizes [η2 = 0.01] for MDT and FT in State 2).

Supporting Information S1 contains additional analyses comparing

patients with and without lesions on CT.

3.5 | Meta-state analyses

A group-effect was found for total distance (p = .047, F = 3.08,

η2 = .08) and number of meta-state changes (p = .045, F = 3.13,

η2 = .08) during the second visit (Figure 6). Post hoc comparisons

showed a significantly lower total distance (p = .035, g = −0.69) and

number of meta-state changes (p = .034, g = −0.69) in patients with

ICR as compared to HC. This was also observed, although at trend-

level, in patients with ICR compared to CR (p = .06 and g = −0.54;

p = .086 and g = −0.49, respectively). There were no significant longi-

tudinal effects. Regarding number of meta-states, state span and num-

ber of hub-states, there were no significant group effects. No

significant group-differences or trends toward significance were

found for the first visit.

Supporting Information S1 contains additional analyses comparing

patients with and without lesions on CT.

3.6 | State-transition analyses

Analysis of the group of HC revealed the presence of two attractors:

(a) consisting of dFNC States 1 and 2, and (b) consisting of States 3, 4,

and 5 (Figure 7). In patients with ICR, these attractors were disrupted

during the first and second visit, with a more chaotic pattern of transi-

tion, and crosslinks between the two attractors. In patients with CR,

the attractors themselves resembled the ones in HC, although there

was a crosslink between the two during both visits.

Supporting Information S1 contains additional analyses comparing

state transition patterns between patients with and without

lesions on CT.

3.7 | Analyses regarding injury severity measures

For static FNC, results remained consistent after exclusion of patients

with moderate TBI. Also, state clustering results remained significant

after exclusion of patients with moderate TBI, and patients with ICR

now showed a significant longitudinal decrease in MDT for State

1 (p = .009, g = −0.43), with a significant difference in delta between

ICR and CR (p = .003, g = 0.89). There were still no significant effects

for NT. Permutation ANOVA for total distance and number of meta-

state changes did no longer show statistically significant group-effects

for the second visit after exclusion of patients with moderate TBI

(both p = .12), although there were still medium effect sizes (η2 = .06

for both total distance and meta-state changes), and the post hoc

group-differences remained similar.

State transition results also remained the same after exclusion of

patients with moderate TBI, except for attractor B during the first visit

for patients with ICR, which may seem more disrupted (Supporting

Information S1).
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F IGURE 3 Group differences in static FNC displayed as sign(mean difference in correlation) * −log10(uncorrected p-values). Blue vertices in
the matrices show trends toward decreased static FNC, red vertices reflect trends toward increased FNC
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4 | DISCUSSION

To the best of our knowledge, this is the first longitudinal resting-

state fMRI-study showing that dynamic functional network connec-

tivity analyses provide information on functional outcome after TBI.

The dynamic neural blueprint of incomplete recovery was character-

ized by an increased global connectivity pattern, which stood out in

the early chronic phase postinjury. More specifically, patients with

incomplete recovery spent less time in a dynamic brain state that

was characterized by the presence of two main functional sub-

domains, one for sensory and motor function, and one for higher

cognitive processing. Furthermore, they exhibited fewer shifts

between dynamic brain states, and had more chaotic attractor

dynamics.

F IGURE 4 Centroids of the five dFNC-states for the total group of participants (TBI and HC). Per state the number of windows as well as the
percentage of total windows assigned to that particular state across all participants is depicted. The top right graph shows the number of subjects
visiting each state for the TBI (first and second visit) and HC groups
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In addition to static functional connectivity analyses, the current

study examined specific time-related patterns of functional connectiv-

ity, defined as dynamic brain states, in patients with mainly mild TBI.

Previous studies have already shown the potential of dynamic connec-

tivity analyses in the investigation of posttraumatic symptoms, and clas-

sification of patients with mild TBI (Hou et al., 2019; van der Horn,

Liemburg, et al., 2016; Vergara et al., 2018). In the present study, k-

means clustering was used to partition the time-varying functional con-

nections into patterns of connectivity, defined as dynamic brain states.

The emerging five states were further classified as attractors using a

relatively novel technique focusing on transition probabilities (Vergara,

van der Horn, et al., 2019). Findings from our healthy control group

showed the presence of two main attractors, which were further stud-

ied in relation to outcome after TBI. Our study also included meta-state

analyses, which encompasses a soft clustering approach providing more

detailed time-varying patterns of functional connectivity and dynamic

state behavior (Miller et al., 2016). To the best of our knowledge, this

method has not been applied so far to study patients with TBI.

Cluster analyses showed that patients with incomplete recovery

spend less time in the segregated dynamic brain state two. The

corresponding attractor A was also found to be disrupted, with cross-

transitions from attractor A to B (Figure 7). Dynamic brain state one

and two were characterized by high connectivity within the sensori-

motor, auditory and visual domains on the one hand, and within the

salience, default mode, and executive domains on the other, with anti-

correlations between these two. Interestingly, our static functional

connectivity results also pointed toward a reduction in segregation of

these anti-correlated network domains in patients with incomplete

recovery at trend level. Altogether, these findings suggest a shift

toward more interconnected brain dynamics, which could reflect

adaptive processes, or at least processes that are aimed at adaptation.

It could also be the case that if these “adaptive” mechanisms fail or

are employed for a too long period of time, this might have detrimen-

tal psychological effects (leading to a more “rigid” mental state),

although we acknowledge the hypothetical nature of these explana-

tions. Previous studies have reported increased connectivity (Hillary

et al., 2014; Kaushal et al., 2019; Mayer et al., 2011), and less efficient

organization of brain networks in patients with TBI relative to healthy

subjects (Pandit et al., 2013). Our findings are also supported by a

recent study showing that patients with persistent symptoms at

6 months after mTBI spend less time in efficient brain states (Hou

et al., 2019). Although patients with incomplete recovery in the pre-

sent study had significantly more symptoms than those with complete

recovery, it is important to note that having persistent symptoms is

not equal to incomplete recovery as measured with the Glasgow Out-

come Scale Extended. In fact, our data show that patients can still

report symptoms while functionally recovered. Interestingly, Hou and

colleagues also reported alterations within auditory and visual net-

works associated with persistent symptoms. Functional outcome, per-

sistent symptoms, preinjury mental health, psychological mechanisms

(e.g., coping), and injury effects are intricately linked in mTBI, and

therefore, we realize that measuring functional outcome does not

fully capture the patterns of recovery after mTBI (Mayer, Quinn, &

Master, 2017; van der Horn et al., 2019). However, the Glasgow

F IGURE 5 Fraction of time spent per state for patients with ICR and CR during the second visit, and HC. Mean, 95% confidence interval, and
one standard deviation are shown. Asterisk (*) indicates a significant group difference after FDR correction. Note that because age was regressed
out of the data, values can be negative
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Outcome Scale Extended is widely used internationally for studying

outcome after mTBI, and for the development of prediction models

(Nelson et al., 2019; van der Naalt et al., 2017). Other outcome mea-

sures such as (persistent) posttraumatic symptoms have proven less

reliable, because patients with symptoms may still resume their daily

activities, symptoms are only partly specific for mTBI, and definitions

of persistent symptoms vary (de Koning et al., 2016; Quinn, Mayer,

Master, & Fann, 2018; Voormolen et al., 2018).

Other research has reported trend-significant increased static

functional connectivity between visual, auditory and sensorimotor

networks in TBI patients relative to healthy controls, with decreased

dynamic functional network connectivity, defined as the variability of

component-pair correlation strength (Mayer, Ling, et al., 2015). More-

over, Palacios and collaborators also reported a negative correlation

between functional connectivity within visual networks and symptom

scores at 6 months postinjury (Palacios et al., 2017). Although our

results should be interpreted with caution, we propose that the loss

of network segregation shown in our study might be a reflection of

enhanced awareness and higher-order cognitive processing of sensory

stimuli, possibly explaining symptoms such as heightened sensitivity

to light and noise, headaches, and neck pain, which are symptoms that

are often reported and impede daily functioning. In addition, increased

connectivity of the default mode and executive network with the

motor system may reflect an increased tendency of patients to act in

response to cognitive processes, for example, with the intention of

changing their current situation, thereby possibly overstressing them-

selves and their adaptive brain systems. Furthermore, the lower num-

ber of meta-state changes and lower meta-state-traveling-distance in

patients with incomplete recovery might be a manifestation of a less

flexible, more rigid mental architecture, possibly underlying an exag-

gerated focus on symptoms or on decreased level of daily functioning.

In other words, our results may represent the neural basis of “getting

stuck” in disadvantageous mental processes. Again, these interpreta-

tions are theoretical, and no supporting evidence from other studies

can be presented at this point. Further studies need to be conducted

to identify whether symptoms, mental processes and behavior are

truly linked to specific changes in dynamic neural systems.

Distorted brain dynamics within the first weeks after injury is

probably due to the brain injury itself and may persist in those

patients with disadvantageous psychological characteristics, leading

to poor long-term outcome (van der Horn et al., 2019). In the current

study, patients were first scanned at approximately 4–5 weeks post-

injury, which impedes drawing inferences about connectivity changes

earlier after injury. However, there are various studies that have

shown changes in static and dynamic functional connectivity within

the first weeks after injury (Hou et al., 2019; Kaushal et al., 2019;

Mayer et al., 2011). Our results showed that patients with complete

recovery had few disruptions of connectivity as compared to patients

incomplete recovery. Previous research has shown that changes in

cerebral blood flow and functional connectivity after mild TBI reach a

F IGURE 6 Total distance traveled through meta-state space for patients with ICR and CR during the second visit, and HC. Mean, 95%
confidence interval, and one standard deviation are shown. Note that because age was regressed out of the data, values can be negative. Asterisk
(*) indicates a significant group difference after FDR correction. Pound sign (#) indicates a trend (p < .1)
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peak within the first 2 weeks, and therefore, it is possible that more

disruptions of connectivity would have been present in our study

sample within the first weeks after injury (Kaushal et al., 2019; Meier

et al., 2015).

Interestingly, a recent study has shown a negative relationship

between time spent in a segregate brain state (comparable to states

one and two in our study), and neuroticism scores in patients with

major depressive disorder (Wu et al., 2019). This state was also char-

acterized by strong connectivity of the default mode network with

sensorimotor, visual and auditory networks, which we also observed

for a posterior default mode network component in states one and

two. According to the authors, the lack of this brain state in patients

with high neuroticism scores could be related to a failure to process

sensory stimuli and associated initiation of mood change, and to a

reduced emotion regulation capacity. Our results might be viewed as

manifestations of psychological rather than injury-related processes.

Patients with full recovery may still experience symptoms, which

means that a considerable proportion of patients are able to adapt

and cope with their symptoms, and may return to their normal daily

activities, while others fail to do so. These patients are likely to have

more beneficial psychological characteristics compared to patients

with symptoms that show incomplete recovery.

Remarkably, regarding state clustering and meta-state measures

differences between patients with incomplete recovery and complete

recovery, and healthy controls, seem to be most pronounced at

3 months postinjury. This is further illustrated by the observation that

mean dwell time for state one seems to decrease over time in patients

with incomplete recovery. It goes without saying that recovery mani-

fests with time, and it is also likely that psychological effects

(e.g., rumination about symptoms and reduced daily functioning)

become more apparent with passing of time. We acknowledge that

these explanations of delayed connectivity changes may be

F IGURE 7 State transition probabilities and schematic representations of attractors for patients with ICR and CR and HC. Additional
rendered brain images show aggregated component T-maps weighted based on the values in the attractor's ASWC- and derivative-centroids
(i.e., component's T-map * [sum of all values for that component in the centroid, with subsequent variance normalization]). Red and blue colors in
the attractor's center image reflect components with positive and negative correlations, respectively. In the surrounding state images, red and
blue reflect time-related (i.e., over windows) increasing and decreasing correlations, which are based on the derivatives. Thus, there are oscillating
patterns of connectivity, orbiting an attractor's center. These patterns are disrupted in patients with ICR
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speculative. In fact, state transition analyses showed clear differences

during both visits, which indicates that functional outcome has an

early neural substrate. We have reason to believe that this state tran-

sition method is able to capture more subtle changes in network

dynamics, possibly due to a lower susceptibility to noise, and because

it provides a more integrated analysis than metrics on individual states

by moving closer to a blend of dynamical systems and data driven

approaches. Regarding the longitudinal pattern of functional connec-

tivity changes after mTBI, studies so far are inconsistent. It has been

reported that functional connectivity changes (probably related to the

injury itself) may be most prominent within the first 1–2 weeks after

injury, but delayed injury effects beyond this period have also been

reported (Kaushal et al., 2019; Meier, Bellgowan, & Mayer, 2017). Our

study specifically focused on outcome, and showed persistent

changes in network behavior up to 3 months postinjury, that may be

related to psychological factors, although the presence of injury-

related effects cannot be ruled out. The fact that crosslinks between

attractor A and B were found patients with complete recovery, may

be subtle manifestations of the latter.

The aim of the present study was to investigate outcome in

patients across the entire spectrum of mild TBI, including patients

with lesions on CT (i.e., complicated mTBI). Previous studies indicated

the marginal added value of CT-scans to prediction models of out-

come after mTBI (Jacobs et al., 2010; van der Naalt et al., 2017). Sup-

plementary analyses in the current study revealed alterations of state

transition patterns in patients with lesions across both visits, while the

group without CT-lesions showed a restored attractor pattern at

follow-up. The group with CT-lesions in our study was relatively small,

but our results show that macroscopic lesions may impact dynamic

brain states, thereby possibly influencing outcome. Despite the fact

that more than 90% of the sample consisted of patients with mild TBI,

the current study also included five patients who had sustained a

moderate TBI. As injury severity is a composition of indicators such as

loss of consciousness, Glasgow Coma Scale score and posttraumatic

amnesia, unambiguous classification of injury severity is not always

feasible. Grading of TBI is a continuum, with inherent difficulties of

grading systems (Malec et al., 2007; Teasdale et al., 2014). For exam-

ple, single indicators of injury severity, such as the Glasgow Coma

Scale score can be underestimated (i.e., lower scores) due to con-

founding factors (e.g., intoxication, sedation effects, hearing impair-

ment). Even though five patients were classified as moderate TBI, the

majority of these patients were clinically close to the severe end of

the mild TBI spectrum (Glasgow Coma Scale score in mild TBI range

with posttraumatic anterograde amnesia lasting longer than 24 hr,

Glasgow Coma Scale score in the moderate TBI range, but with

speedy recovery of this score, posttraumatic amnesia lasting shorter

than 24 hr, and/or no or short admission to the Intensive Care Unit).

Furthermore, outcome scores for this group were not biased toward

the lower end, and most importantly, results were mostly consistent

after exclusion of patients with moderate TBI, and (meta-)state mea-

sures for these individuals were within the range of the group they

were part of (complete or incomplete recovery).

This study has limitations and caveats that need to be addressed.

First, the group of healthy controls was relatively small, and they were

only scanned once. This one scan was used for comparisons with

patients’ data from both the first and second visits. Ideally, healthy

controls would have also returned for follow-up scanning. Second, the

group of patients with incomplete recovery is relatively small com-

pared to those who fully recovered, which may have affected our

results due to reduced power. Although effect sizes were small, a

larger sample size might have resulted in finding more (subtle) differ-

ences between complete and incomplete outcome during the first

visit. Sample size was also one of the reasons for dichotomizing the

outcome measure. In case of larger sample size, with a larger variabil-

ity of outcome scores, ordinal regression may uncover valuable infor-

mation. Third, the proportion of patients with moderate TBI is quite

small compared to the ones with mild TBI. In future studies, we plan

to include a larger sample of moderate TBI, to make better compari-

sons between these groups. Fourth, due to controlling for under-

achievement not all of the neuropsychological test data could be

analyzed, which resulted in suboptimal power to discern differences,

even though no differences were expected.

To conclude, the current study demonstrated alterations in

dynamic brain states that are associated with recovery processes in

patients with mild to moderate TBI. In our opinion, future studies

should aim to also investigate these brain states at an earlier stage

postinjury, to get a better sense of longitudinal changes related to

outcome. This will lead to a better understanding of causal mecha-

nisms of poor outcome, especially when it is coupled with measure-

ment of psychological characteristics, such as personality traits

(e.g., neuroticism). Furthermore, measurement of dynamic brain states

may provide a future tool to identify patients who are at-risk for poor

outcome, which may facilitate the start of early interventions, and

eventually, to monitor treatment effects.
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