318 research outputs found

    Exploring Older Adult Susceptibility to Fraudulent Computer Pop-Up Interruptions

    Get PDF
    © 2019, Springer International Publishing AG, part of Springer Nature. The proliferation of Internet connectivity and accessibility has been accompanied by an increase in cyber-threats, including fraudulent communications. Fake computer updates, which attempt to persuade people to download malicious software by mimicking trusted brands and/or instilling urgency, are one way in which fraudsters try to infiltrate systems. A recent study of young university students (M 18.52-years) found that when such pop-ups interrupt a demanding cognitive task, participants spent little time viewing them and were more likely to miss suspicious cues and accept these updates compared to when they were viewed without the pressure to resume a suspended task [1]. The aim of the current experiment was to test an older adult sample (N = 29, all >60 years) using the same paradigm. We predicted that they would be more susceptible to malevolent pop-ups [2]; trusting them more than younger adults (e.g., [3]), and would attempt to resume the interrupted task faster to limit forgetting of encoded items. Phase 1 involved serial recall memory trials interrupted by genuine, mimicked, and low authority pop-ups. During phase 2, participants rated messages with unlimited time and gave reasons for their decisions. It was found that more than 70% of mimicked and low authority pop-ups were accepted in Phase 1 vs ~80% genuine pop-ups (and these were all approximately 10% higher than [1]). This was likely due to a greater tendency to ignore or miss suspicious content when performing under pressure, despite spending longer with messages and reporting high awareness of scam techniques than younger adults. Older adult participants were more suspicious during Phase 2 performing comparably to the younger adults in [1]. Factors that may impact older adult decisions relating to fraudulent computer communications are discussed, as well as theoretical and practical implications

    From Children to Adults: Motor Performance across the Life-Span

    Get PDF
    The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur

    Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program

    Get PDF
    BACKGROUND: Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. METHODOLOGY/PRINCIPAL FINDINGS: Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1(R)) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1(R) mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. CONCLUSION: The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention

    PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles culicifacies s.l</it>., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (<it>kdr</it>) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of <it>kdr </it>mutation (L1014F) in a field population of <it>An. culicifacies s.l</it>. and three new PCR-based methods for <it>kdr </it>genotyping.</p> <p>Methods</p> <p>The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant <it>An. culicifacies s.l</it>. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for <it>kdr </it>genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped.</p> <p>Results</p> <p>The genotyping of this <it>An. culicifacies s.l</it>. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the <it>kdr </it>allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium.</p> <p>Conclusion</p> <p>The Leu-Phe mutation, which generates the <it>kdr </it>phenotype in many insects, was detected in a pyrethroid and DDT resistant <it>An. culicifacies s.l</it>. population. Three PCR-based methods were developed for <it>kdr </it>genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at <it>kdr </it>locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped.</p

    Pyrethroid Resistance in an Anopheles funestus Population from Uganda

    Get PDF
    Background: The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary haracterisation of the putative resistance mechanisms involved. Methodology/Principal Findings: A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin). Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate), malathion (organophosphate) and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG. Conclusion: This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken into account for the implementation and management of vector control programs in Africa

    Molecular Ecology of Pyrethroid Knockdown Resistance in Culex pipiens pallens Mosquitoes

    Get PDF
    Pyrethroid insecticides have been extensively used in China and worldwide for public health pest control. Accurate resistance monitoring is essential to guide the rational use of insecticides and resistance management. Here we examined the nucleotide diversity of the para-sodium channel gene, which confers knockdown resistance (kdr) in Culex pipiens pallens mosquitoes in China. The sequence analysis of the para-sodium channel gene identified L1014F and L1014S mutations. We developed and validated allele-specific PCR and the real-time TaqMan methods for resistance diagnosis. The real-time TaqMan method is more superior to the allele-specific PCR method as evidenced by higher amplification rate and better sensitivity and specificity. Significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014S mutations in the kdr gene can be used as a molecular marker for deltamethrin resistance monitoring in natural Cx. pipiens pallens populations in the East China region. The laboratory selection experiment found that L1014F mutation frequency, but not L1014S mutation, responded to deltamethrin selection, suggesting that the L1014F mutation is the key mutation conferring resistance to deltamethrin. High L1014F mutation frequency detected in six populations of Cx. pipens pallens suggests high prevalence of pyrethroid resistance in Eastern China, calling for further surveys to map the resistance in China and for investigating alternative mosquito control strategies
    corecore