277 research outputs found

    The Accuracy of Patient-Specific Spinal Drill Guides Is Non-Inferior to Computer-Assisted Surgery:The Results of a Split-Spine Randomized Controlled Trial

    Get PDF
    In recent years, patient-specific spinal drill guides (3DPGs) have gained widespread popularity. Several studies have shown that the accuracy of screw insertion with these guides is superior to that obtained using the freehand insertion technique, but there are no studies that make a comparison with computer-assisted surgery (CAS). The aim of this study was to determine whether the accuracy of insertion of spinal screws using 3DPGs is non-inferior to insertion via CAS. A randomized controlled split-spine study was performed in which 3DPG and CAS were randomly assigned to the left or right sides of the spines of patients undergoing fixation surgery. The 3D measured accuracy of screw insertion was the primary study outcome parameter. Sixty screws inserted in 10 patients who completed the study protocol were used for the non-inferiority analysis. The non-inferiority of 3DPG was demonstrated for entry-point accuracy, as the upper margin of the 95% CI (−1.01 mm–0.49 mm) for the difference between the means did not cross the predetermined non-inferiority margin of 1 mm (p < 0.05). We also demonstrated non-inferiority of 3D angular accuracy (p < 0.05), with a 95% CI for the true difference of −2.30◦–1.35◦, not crossing the predetermined non-inferiority margin of 3◦ (p < 0.05). The results of this randomized controlled trial (RCT) showed that 3DPGs provide a non-inferior alternative to CAS in terms of screw insertion accuracy and have considerable potential as a navigational technique in spinal fixation

    Accuracy of Patient-Specific 3D-Printed Drill Guides for Pedicle and Lateral Mass Screw Insertion:An Analysis of 76 Cervical and Thoracic Screw Trajectories

    Get PDF
    STUDY DESIGN: Single-center retrospective case series. OBJECTIVE: The purpose of this study was to assess the safety and accuracy of 3D-printed individualized drill guides for pedicle and lateral mass screw insertion in the cervical and upper-thoracic region, by comparing the pre-operative 3D-surgical plan with the postoperative results. SUMMARY OF BACKGROUND DATA: Posterior spinal fusion surgery can provide rigid intervertebral fixation but screw misplacement involves a high risk of neurovascular injury. However, modern spine surgeons now have tools such as virtual surgical planning and 3D-printed drill guides to facilitate spinal screw insertion. METHODS: A total of 15 patients who underwent posterior spinal fusion surgery involving patient-specific 3D-printed drill guides were included in this study. After segmentation of bone and screws, the post-operative models were superimposed onto the preoperative surgical plan. The accuracy of the realized screw trajectories was quantified by measuring the entry point and angular deviation. RESULTS: The 3D deviation analysis showed that the entry point and angular deviation over all 76 screw trajectories were 1.40 ± 0.81 mm and 6.70 ± 3.77°, respectively. Angular deviation was significantly higher in the sagittal plane than in the axial plane (P = 0.02). All screw positions were classified as 'safe' (100%), showing no neurovascular injury, facet joint violation, or violation of the pedicle wall. CONCLUSIONS: 3D virtual planning and 3D-printed patient-specific drill guides appear to be safe and accurate for pedicle and lateral mass screw insertion in the cervical and upper-thoracic spine. The quantitative 3D deviation analyses confirmed that screw positions were accurate with respect to the 3D-surgical plan. LEVEL OF EVIDENCE: 4

    Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp petraea

    Get PDF
    Atmospheric temperature is a key factor in determining the distribution of a plant species. Alongside this, plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. We investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes associated with exposure to cold temperatures. Seeds of A. petraea were obtained from populations along a latitudinal gradient, namely Wales, Sweden and Iceland and grown in a controlled cabinet environment. Mannose, glucose, fructose, sucrose and raffinose concentrations were different between cold treatments and populations, especially in the Welsh population, but polyhydric alcohol concentrations were not. The free amino acid compositions were population specific, with fold differences in most amino acids, especially in the Icelandic populations, with gross changes in amino acids, particularly those associated with glutamine metabolism. Metabolic fingerprints and profiles were obtained. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic characteristic phenotypes for each population and temperature. It is suggested that amino acids and carbohydrates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations at different atmospheric temperatures. These findings show that there is significant natural variation in cold metabolism among populations of A. l. petraea which may signify plant adaptation to local climates

    Both Paraoxonase-1 Genotype and Activity Do Not Predict the Risk of Future Coronary Artery Disease; the EPIC-Norfolk Prospective Population Study

    Get PDF
    Paraoxonase-1 (PON1) is an antioxidant enzyme, that resides on high-density lipoprotein (HDL). PON1-activity, is heavily influenced by the PON1-Q192R polymorphism. PON1 is considered to protect against atherosclerosis, but it is unclear whether this relation is independent of its carrier, HDL. In order to evaluate the atheroprotective potential of PON1, we assessed the relationships among PON1-genotype, PON1-activity and risk of future coronary artery disease (CAD), in a large prospective case-control study. Methodology/Principal Findings: Cases (n = 1138) were apparently healthy men and women aged 45-79 years who developed fatal or nonfatal CAD during a mean follow-up of 6 years. Controls (n = 2237) were matched by age, sex and enrollment time. PON1-activity was similar in cases and controls (60.7 +/- 645.3 versus 62.6 +/- 645.8 U/L, p = 0.3) and correlated with HDL-cholesterol levels (r = 0.16, p < 0.0001). The PON1-Q192R polymorphism had a profound impact on PON1-activity, but did not predict CAD risk (Odds Ratio [OR] per R allele 0.98[0.84-1.15], p = 0.8). Using conditional logistic regression, quartiles of PON1-activity showed a modest inverse relation with CAD risk (OR for the highest versus the lowest quartile 0.77[0.63-0.95], p = 0.01; p-trend = 0.06). PON1-activity adjusted for Q192R polymorphism correlated better with HDL-cholesterol (r = 0.26, p < 0.0001) and more linearly predicted CAD risk (0.79[0.64-0.98], p = 0.03; p-trend = 0.008). However, these relationships were abolished after adjustment for HDL (particles-cholesterol-size) and apolipoprotein A-l (0.94[0.74-1.18], p-trend = 0.3). Conclusions/Significance: This study, shows that PON1-activity inversely relates to CAD risk, but not independent of HDL, due to its close association with the HDL-particle. These data strongly suggest that a low PON1-activity is not a causal factor in atherogenesi

    Ecologische gegevens van vogels voor Standaard Gegevensformulieren Vogelrichtlijngebieden

    Get PDF
    In dit rapport wordt verslag gedaan van de ecologische beoordeling van Vogelrichtlijngebieden voor de vogels voor de Standaard Gegevensformulieren. Na een beschrijving van de gevolgde werkwijze om de populatie, behoudsstatus, isolatie en algemene beoordeling te bepalen, worden in tabelvorm per soort voor alle relevante Vogelrichtlijngebieden de beoordelingen gepresenteer

    A Prospectively Validated Prognostic Model for Patients with Locally Advanced Squamous Cell Carcinoma of the Head and Neck Based on Radiomics of Computed Tomography Images

    Get PDF
    Background: Locoregionally advanced head and neck squamous cell carcinoma (HNSCC) patients have high relapse and mortality rates. Imaging-based decision support may improve out-comes by optimising personalised treatment, and support patient risk stratification. We propose a multifactorial prognostic model including radiomics features to improve risk stratification for advanced HNSCC, compared to TNM eighth edition, the gold standard. Patient and methods: Data of 666 retrospective-and 143 prospective-stage III-IVA/B HNSCC patients were collected. A multivar-iable Cox proportional-hazards model was trained to predict overall survival (OS) using diagnostic CT-based radiomics features extracted from the primary tumour. Separate analyses were performed using TNM8, tumour volume, clinical and biological variables, and combinations thereof with radi-omics features. Patient risk stratification in three groups was assessed through Kaplan–Meier (KM) curves. A log-rank test was performed for significance (p-value < 0.05). The prognostic accuracy was reported through the concordance index (CI). Results: A model combining an 11-feature radiomics signature, clinical and biological variables, TNM8, and volume could significantly stratify the validation cohort into three risk groups (p < 0∙01, CI of 0.79 as validation). Conclusion: A combination of radiomics features with other predictors can predict OS very accurately for advanced HNSCC patients and improves on the current gold standard of TNM8

    Carriers of Loss-of-Function Mutations in ABCA1 Display Pancreatic β-Cell Dysfunction

    Get PDF
    OBJECTIVE: Abnormal cellular cholesterol handling in islets may contribute to beta-cell dysfunction in type 2 diabetes. beta-Cell deficiency for the ATP binding cassette transporter A1 (ABCA1), which mediates the efflux of cellular cholesterol, leads to altered intracellular cholesterol homeostasis and impaired insulin secretion in mice. We aimed to assess the impact of ABCA1 dysfunction on glucose homeostasis in humans. RESEARCH DESIGN AND METHODS: In heterozygous carriers of disruptive mutations in ABCA1 and family-based noncarriers of similar age, sex, and BMI, we performed oral glucose tolerance tests (OGTTs) (n = 15 vs. 14) and hyperglycemic clamps (n = 8 vs. 8). RESULTS: HDL cholesterol levels in carriers were less than half those in noncarriers, but LDL cholesterol levels did not differ. Although fasting plasma glucose was similar between groups, glucose curves after an OGTT were mildly higher in carriers than in noncarriers. During hyperglycemic clamps, carriers demonstrated lower first-phase insulin secretion than noncarriers but no difference in insulin sensitivity. The disposition index (a measure of beta-cell function adjusted for insulin sensitivity) of the carriers was significantly reduced in ABCA1 heterozygotes. CONCLUSIONS: Carriers of loss-of-function mutations in ABCA1 show impaired insulin secretion without insulin resistance. Our data provide evidence that ABCA1 is important for normal beta-cell function in human
    corecore