117 research outputs found

    The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers.

    Get PDF
    A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IK(V)) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IK(V) displays the canonical hallmarks of K(V) channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gK(V)) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IK(V). Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IK(V), but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IK(V) records. A two-channel model that faithfully simulates IK(V) records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gK(V), and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IK(V)1.4 and IK(V)3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IK(V) resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IK(V) records. Normalized peak attenuations showed the same voltage dependence as peak IK(V) plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IK(V) and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gK(V) in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that K(V) channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IK(V) arises from the TTS

    Calcium Release Domains in Mammalian Skeletal Muscle Studied with Two-photon Imaging and Spot Detection Techniques

    Get PDF
    The spatiotemporal characteristics of the Ca2+ release process in mouse skeletal muscle were investigated in enzymatically dissociated fibers from flexor digitorum brevis (FDB) muscles, using a custom-made two-photon microscope with laser scanning imaging (TPLSM) and spot detection capabilities. A two-microelectrode configuration was used to electrically stimulate the muscle fibers, to record action potentials (APs), and to control their myoplasmic composition. We used 125 μM of the low-affinity Ca2+ indicator Oregon green 488 BAPTA-5N (OGB-5N), and 5 or 10 mM of the Ca2+ chelator EGTA (pCa 7) in order to arrest fiber contraction and to constrain changes in the [Ca2+] close to the release sites. Image and spot data showed that the resting distribution of OGB-5N fluorescence was homogeneous along the fiber, except for narrow peaks (∼23% above the bulk fluorescence) centered at the Z-lines, as evidenced by their nonoverlapping localization with respect to di-8-ANEPPS staining of the transverse tubules (T-tubules). Using spot detection, localized Ca2+ transients evoked by AP stimulation were recorded from adjacent longitudinal positions 100 nm apart. The largest and fastest ΔF/F transients were detected at sites flanking the Z-lines and colocalized with T-tubules; the smallest and slowest were detected at the M-line, whereas transients at the Z-line showed intermediate features. Three-dimensional reconstructions demonstrate the creation of two AP-evoked Ca2+ release domains per sarcomere, which flank the Z-line and colocalize with T-tubules. In the presence of 10 mM intracellular EGTA, these domains are formed in ∼1.4 ms and dissipate within ∼4 ms, after the peak of the AP. Their full-width at half-maximum (FWHM), measured at the time that Ca2+ transients peaked at T-tubule locations, was 0.62 μm, similar to the 0.61 μm measured for di-8-ANEPPS profiles. Both these values exceed the limit of resolution of the optical system, but their similarity suggests that at high [EGTA] the Ca2+ domains in adult mammalian muscle fibers are confined to Ca2+ release sites located at the junctional sarcoplasmic reticulum (SR)

    Voltage-dependent Dynamic FRET Signals from the Transverse Tubules in Mammalian Skeletal Muscle Fibers

    Get PDF
    Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC4(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC4(5). The peak ΔF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC4(5) exhibit ΔF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS

    Modulation by caffeine of calcium-release microdomains in frog skeletal muscle fibers

    Full text link
    The effects of caffeine on the process of excitation-contraction coupling in amphibian skeletal muscle fibers were investigated using the confocal spot detection technique. This method permits to carefully discriminate between caffeine effects on the primary sources of Ca2+ release at the Z-lines where the triads are located and secondary actions on other potential Ca Release sources. Our results demonstrate that 0.5 mM caffeine potentiates and prolongs localized action-potential evoked Ca2+ transients recorded at the level of the Z-lines, but that 1mM only prolongs them. The effects at both doses are reversible. At the level of the M-line, localized Ca2+ transients displayed more variability in the presence of 1 mM caffeine than in control conditions. At this dose of caffeine, extra-junctional sources of Ca2+ release also were observed occasionally

    Resolving the Fast Kinetics of Cooperative Binding: Ca2+ Buffering by Calretinin

    Get PDF
    Cooperativity is one of the most important properties of molecular interactions in biological systems. It is the ability to influence ligand binding at one site of a macromolecule by previous ligand binding at another site of the same molecule. As a consequence, the affinity of the macromolecule for the ligand is either decreased (negative cooperativity) or increased (positive cooperativity). Over the last 100 years, O2 binding to hemoglobin has served as the paradigm for cooperative ligand binding and allosteric modulation, and four practical models were developed to quantitatively describe the mechanism: the Hill, the Adair-Klotz, the Monod-Wyman-Changeux, and the Koshland-Némethy-Filmer models. The predictions of these models apply under static conditions when the binding reactions are at equilibrium. However, in a physiological setting, e.g., inside a cell, the timing and dynamics of the binding events are essential. Hence, it is necessary to determine the dynamic properties of cooperative binding to fully understand the physiological implications of cooperativity. To date, the Monod-Wyman-Changeux model was applied to determine the kinetics of cooperative binding to biologically active molecules. In this model, cooperativity is established by postulating two allosteric isoforms with different binding properties. However, these studies were limited to special cases, where transition rates between allosteric isoforms are much slower than the binding rates or where binding and unbinding rates could be measured independently. For all other cases, the complex mathematical description precludes straightforward interpretations. Here, we report on calculating for the first time the fast dynamics of a cooperative binding process, the binding of Ca2+ to calretinin. Calretinin is a Ca2+-binding protein with four cooperative binding sites and one independent binding site. The Ca2+ binding to calretinin was assessed by measuring the decay of free Ca2+ using a fast fluorescent Ca2+ indicator following rapid (<50-μs rise time) Ca2+ concentration jumps induced by uncaging Ca2+ from DM-nitrophen. To unravel the kinetics of cooperative binding, we devised several approaches based on known cooperative binding models, resulting in a novel and relatively simple model. This model revealed unexpected and highly specific nonlinear properties of cellular Ca2+ regulation by calretinin. The association rate of Ca2+ with calretinin speeds up as the free Ca2+ concentration increases from cytoplasmic resting conditions (∼100 nM) to approximately 1 μM. As a consequence, the Ca2+ buffering speed of calretinin highly depends on the prevailing Ca2+ concentration prior to a perturbation. In addition to providing a novel mode of action of cellular Ca2+ buffering, our model extends the analysis of cooperativity beyond the static steady-state condition, providing a powerful tool for the investigation of the dynamics and functional significance of cooperative binding in general

    Generation of two transgene-free human iPSC lines from CD133+ cord blood cells

    Get PDF
    We have generated two human induced pluripotent stem cell (iPSC) lines from CD133+ cells isolated from umbilical cord blood (CB) of a female child using non-integrative Sendai virus. Here we describe the complete characterization of these iPSC lines: PRYDi-CB5 and PRYDi-CB40

    The Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    Get PDF
    Na (and Li) currents and fluorescence transients were recorded simultaneously under voltage-clamp conditions from mouse flexor digitorum brevis fibers stained with the potentiometric dye di-8-ANEPPS to investigate the distribution of Na channels between the surface and transverse tubular system (TTS) membranes. In fibers rendered electrically passive, voltage pulses resulted in step-like fluorescence changes that were used to calibrate the dye response. The effects of Na channel activation on the TTS voltage were investigated using Li, instead of Na, because di-8-ANEPPS transients show anomalies in the presence of the latter. Na and Li inward currents (INa, ILi; using half of the physiological ion concentration) showed very steep voltage dependences, with no reversal for depolarizations beyond the calculated equilibrium potential, suggesting that most of the current originates from a noncontrolled membrane compartment. Maximum peak ILi was ∼30% smaller than for INa, suggesting a Li-blocking effect. ILi activation resulted in the appearance of overshoots in otherwise step-like di-8-ANEPPS transients. Overshoots had comparable durations and voltage dependence as those of ILi. Simultaneously measured maximal overshoot and peak ILi were 54 ± 5% and 773 ± 53 µA/cm2, respectively. Radial cable model simulations predicted the properties of ILi and di-8-ANEPPS transients when TTS access resistances of 10–20 Ωcm2, and TTS-to-surface Na permeability density ratios in the range of 40:60 to 70:30, were used. Formamide-based osmotic shock resulted in incomplete detubulation. However, results from a subpopulation of treated fibers (low capacitance) provide confirmatory evidence that a significant proportion of ILi, and the overshoot in the optical signals, arises from the TTS in normal fibers. The quantitative evaluation of the distribution of Na channels between the sarcolemma and the TTS membranes, as provided here, is crucial for the understanding of the radial and longitudinal propagation of the action potential, which ultimately govern the mechanical activation of muscle in normal and diseased conditions

    Contact-dependent aggregation of functional Ca 2+ channels, synaptic vesicles and postsynaptic receptors in active zones of a neuromuscular junction

    Get PDF
    Abstract To examine whether Ca 2+ channels aggregate in a contact-dependent manner, we characterized the distribution of synaptic vesicles and postsynaptic receptors, and compared it to the location of Ca 2+ entry sites, in a Xenopus laevis nerve-muscle coculture preparation using a localized Ca 2+ detection method. The majority (75%) of Ca 2+ entry sites at spontaneously formed nerve±muscle contacts were associated with enhanced immuno¯uorescence to the synaptic vesicle protein, SV2. In contrast, only 11% of recorded sites without Ca 2+ transients exhibited signi®cant SV2 immuno¯uorescence. When comparing the spatial distribution of synaptic markers with that of Ca 2+ entry sites, we found that the majority of Ca 2+ entry sites (61%) were associated with both enhanced SV2 immuno¯uorescence and R-BTX¯uorescence, thereby identifying putative neurotransmitter release sites where Ca 2+ channels, synaptic vesicles and postsynaptic receptors are colocalized. Using polystyrene beads coated with a heparin binding protein known to mediate in vitro postsynaptic receptor clustering, we show that the location of Ca 2+ domains was associated with enhanced SV2 immuno¯uorescence at neurite-to-bead contacts. We conclude that the localization of functional Ca 2+ channels to putative active zones follows a contact-dependent signalling mechanism similar to that known to mediate vesicle aggregation and AChR clustering

    Psychometric evidence of a brief version of the Coping Humor Scale in elderly peruvians]

    Get PDF
    Introducción: El humor tiene un papel importante en la promoción de un envejecimiento exitoso y saluda-ble. Sin embargo, su estudio científico es aún limitado, en parte debido a la ausencia de medidas validadaspara su uso en el ámbito latinoamericano. El objetivo del estudio fue traducir al espa˜nol y examinar lasevidencias de fiabilidad y validez basadas en la estructura interna, convergente y discriminante de laversión peruana de la Coping with Humor Scale-5 ítems.Materiales y métodos: Los participantes fueron 236 adultos mayores peruanos (78,4% mujeres y 21,6%hombres) con un promedio de edad de 72,8 años (DE = 6,90).Revisión por pare
    corecore