598 research outputs found

    Total brood removal and other biotechniques for the sustainable control of varroa mites in honey bee colonies: Economic impact in beekeeping farm case studies in Northwestern Italy

    Get PDF
    Honey bee colonies are affected by many threats, and the Varroa mite represents one of the most important causes of honey bee disease. The control of the Varroa population is managed by different methods, and in recent years, biotechnical practices are considered preferable to chemical approaches in order to safeguard honey bee health and avoid residues in bee products as well as the appearance of acaricide resistance. However, little is known about the economic performance of beekeeping exploitations in relation to the methods used for tackling Varroa. This study aims to investigate the economic impact of total brood removal (TBR) as a biotechnique to keep Varroa mites under control, and compare this to other common biotechniques and chemical Varroa control in numerous Italian beekeeping case studies. A pool of economic and technical indexes was proposed. The proposed index pool can be included in the development of an expert system (such as a decision support system) able to address the optimal management of this very complex activity, which requires natural resources, land protection, capital and high technical skills. The result showed that the adoption of the TBR biotechnique vs. other biotechniques led to an increase in terms of total revenue (increase values ranging from 11% to 28%) even though more labor is needed (increase values ranging from 43 to 83 min/hive) and a loss of honey production could be recorded in some cases. Additionally, the total expenses, represented mainly by supplemental nutrition and treatments with oxalic acid, affected the economic results of the biotechnical practices. The use of biotechniques vs. chemical control resulted in decreased treatment costs and increased feeding costs. The advantages resulting from not using synthetic acaricides (which are dangerous for honey bee and human health as well as the environment) as well as the advantages linked to the production of new nuclei (which are involved in the maintenance of bee stock and counteract the decline in honey bee population) and pollination ecosystem services could make beekeeping farms more resilient over time

    Pharmacological c-Jun NH2-Terminal Kinase (JNK) Pathway Inhibition Reduces Severity of Spinal Muscular Atrophy Disease in Mice

    Get PDF
    Spinal muscular atrophy (SMA) is a severe neurodegenerative disorder that occurs in early childhood. The disease is caused by the deletion/mutation of the survival motor neuron 1 (SMN1) gene resulting in progressive skeletal muscle atrophy and paralysis, due to the degeneration of spinal motor neurons (MNs). Currently, the cellular and molecular mechanisms underlying MN death are only partly known, although recently it has been shown that the c-Jun NH2-terminal kinase (JNK)-signaling pathway might be involved in the SMA pathogenesis. After confirming the activation of JNK in our SMA mouse model (SMN2+/+; SMN\u3947+/+; Smn-/-), we tested a specific JNK-inhibitor peptide (D-JNKI1) on these mice, by chronic administration from postnatal day 1 to 10, and histologically analyzed the spinal cord and quadriceps muscle at age P12. We observed that D-JNKI1 administration delayed MN death and decreased inflammation in spinal cord. Moreover, the inhibition of JNK pathway improved the trophism of SMA muscular fibers and the size of the neuromuscular junctions (NMJs), leading to an ameliorated innervation of the muscles that resulted in improved motor performances and hind-limb muscular tone. Finally, D-JNKI1 treatment slightly, but significantly increased lifespan in SMA mice. Thus, our results identify JNK as a promising target to reduce MN cell death and progressive skeletal muscle atrophy, providing insight into the role of JNK-pathway for developing alternative pharmacological strategies for the treatment of SMA

    Meta-analytic clustering of the insular cortex: Characterizing the meta-analytic connectivity of the insula when involved in active tasks

    Get PDF
    The human insula has been parcellated on the basis of resting state functional connectivity and diffusion tensor imaging. Little is known about the organization of the insula when involved in active tasks. We explored this issue using a novel meta-analytic clustering approach. We queried the BrainMap database asking for papers involving normal subjects that recorded activations in the insular cortex, retrieving 1305 papers, involving 22,872 subjects and a total of 2957 foci. Data were analyzed with several different methodologies, some of which expressly designed for this work. We used meta-analytic connectivity modeling and meta-analytic clustering of data obtained from the BrainMap database. We performed cluster analysis to subdivide the insula in areas with homogeneous connectivity, and density analysis of the activated foci using Voronoi tessellation. Our results confirm and extend previous findings obtained investigating the resting state connectivity of the anterior–posterior and left–right insulae. They indicate, for the first time, that some blocks of the anterior insula play the role of hubs between the anterior and the posterior insulae, as confirmed by their activation in several different paradigms. This finding supports the view that the network to which the anterior insula belongs is related to saliency detection. The insulae of both sides can be parcellated in two clusters, the anterior and the posterior: the anterior is characterized by an attentional pattern of connectivity with frontal, cingulate, parietal, cerebellar and anterior insular highly connected areas, whereas the posterior is characterized by a more local connectivity pattern with connections to sensorimotor, temporal and posterior cingulate areas. This antero–posterior subdivision, better characterized on the right side, results sharper with the connectivity based clusterization than with the behavioral based clusterization. The circuits belonging to the anterior insula are very homogeneous and their blocks in multidimensional scaling of MACM-based profiles are in central position, whereas those belonging to the posterior insula, especially on the left, are located at the periphery and sparse, thus suggesting that the posterior circuits bear a more heterogeneous connectivity. The anterior cluster is mostly activated by cognition, whereas the posterior is mostly activated by interoception, perception and emotion

    Muscle pain in mitochondrial diseases: a picture from the Italian network

    Get PDF
    Muscle pain may be part of many neuromuscular disorders including myopathies, peripheral neuropathies and lower motor neuron diseases. Although it has been reported also in mitochondrial diseases (MD), no extensive studies in this group of diseases have been performed so far. We reviewed clinical data from 1398 patients affected with mitochondrial diseases listed in the database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases", to assess muscle pain and its features. Muscle pain was present in 164 patients (11.7%). It was commonly observed in subjects with chronic progressive external ophthalmoplegia (cPEO) and with primary myopathy without cPEO, but also-although less frequently-in multisystem phenotypes such as MELAS, MERFF, Kearns Sayre syndrome, NARP, MNGIE and Leigh syndrome. Patients mainly complain of diffuse exercise-related muscle pain, but focal/multifocal and at rest myalgia were often also reported. Muscle pain was more commonly detected in patients with mitochondrial DNA mutations (67.8%) than with nuclear DNA changes (32.2%). Only 34% of the patients showed a good response to drug therapy. Interestingly, patients with nuclear DNA mutations tend to have a better therapeutic response than patients with mtDNA mutations. Muscle pain is present in a significant number of patients with MD, being one of the most common symptoms. Although patients with a myopathic phenotype are more prone to develop muscle pain, this is also observed in patients with a multi system involvement, representing an important and disabling symptom having poor response to current therapy

    The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel

    Get PDF
    Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30\ua0mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs

    Cytokine Profile in Striated Muscle Laminopathies: New Promising Biomarkers for Disease Prediction

    Get PDF
    Laminopathies are a wide and heterogeneous group of rare human diseases caused by mutations of the LMNA gene or related nuclear envelope genes. The variety of clinical phenotypes and the wide spectrum of histopathological changes among patients carrying an identical mutation in the LMNA gene make the prognostic process rather difficult, and classical genetic screens appear to have limited predictive value for disease development. The aim of this study was to evaluate whether a comprehensive profile of circulating cytokines may be a useful tool to differentiate and stratify disease subgroups, support clinical follow-ups and contribute to new therapeutic approaches. Serum levels of 51 pro- and anti-inflammatory molecules, including cytokines, chemokines and growth factors, were quantified by a Luminex multiple immune-assay in 53 patients with muscular laminopathy (Musc-LMNA), 10 with non-muscular laminopathy, 22 with other muscular disorders and in 35 healthy controls. Interleukin-17 (IL-17), granulocyte colony-stimulating factor (G-CSF) and transforming growth factor beta (TGF-β2) levels significantly discriminated Musc-LMNA from controls; interleukin-1β (IL-1β), interleukin-4 (IL-4) and interleukin-8 (IL-8) were differentially expressed in Musc-LMNA patients compared to those with non-muscular laminopathies, whereas IL-17 was significantly higher in Musc-LMNA patients with muscular and cardiac involvement. These findings support the hypothesis of a key role of the immune system in Musc-LMNA and emphasize the potential use of cytokines as biomarkers for these disorders

    A Metachronous splenic metastases from esophageal cancer: a case report

    Get PDF
    The spleen is an infrequent site for metastatic lesions, and solitary splenic metastases from squamous cell carcinoma of the esophagus are very rare: only 4 cases have been reported thus far. These lesions are whitish nodules that are macroscopically and radiologically similar to primary splenic lymphomas. We report a case of metachronous splenic metastases from esophageal cancer and multiple splenic abscesses, which developed nine months after apparently curative esophagectomy without adjuvant chemotherapy. The patient underwent splenectomy dissection followed by adjuvant chemotherapy, but liver and skin metastases developed, and the patient died 9 months later
    corecore