849 research outputs found
Uniformity of the pseudomagnetic field in strained graphene
We present a study on the uniformity of the pseudomagnetic field in graphene
as a function of the relative orientation between the graphene lattice and
straining directions. For this, we strained a regular micron-sized graphene
hexagon by deforming it symmetrically by displacing three of its edges. By
simulations, we found that the pseudomagnetic field is strongest if the strain
is applied perpendicular to the armchair direction of graphene. For a hexagon
with a side length of 1 m, the pseudomagnetic field has a maximum of
1.2 T for an applied strain of 3.5% and it is uniform (variance %) within
a circle with a diameter of nm. This diameter is on the order of the
typical diameter of the laser spot in a state-of-the-art confocal Raman
spectroscopy setup, which suggests that observing the pseudomagnetic field in
measurements of shifted magneto-phonon resonance is feasible.Comment: 7 pages, 5 figure
Interplay between nanometer-scale strain variations and externally applied strain in graphene
We present a molecular modeling study analyzing nanometer-scale strain
variations in graphene as a function of externally applied tensile strain. We
consider two different mechanisms that could underlie nanometer-scale strain
variations: static perturbations from lattice imperfections of an underlying
substrate and thermal fluctuations. For both cases we observe a decrease in the
out-of-plane atomic displacements with increasing strain, which is accompanied
by an increase in the in-plane displacements. Reflecting the non-linear elastic
properties of graphene, both trends together yield a non-monotonic variation of
the total displacements with increasing tensile strain. This variation allows
to test the role of nanometer-scale strain variations in limiting the carrier
mobility of high-quality graphene samples
Tunable mechanical coupling between driven microelectromechanical resonators
We present a microelectromechanical system, in which a silicon beam is
attached to a comb-drive actuator, that is used to tune the tension in the
silicon beam, and thus its resonance frequency. By measuring the resonance
frequencies of the system, we show that the comb-drive actuator and the silicon
beam behave as two strongly coupled resonators. Interestingly, the effective
coupling rate (~ 1.5 MHz) is tunable with the comb-drive actuator (+10%) as
well as with a side-gate (-10%) placed close to the silicon beam. In contrast,
the effective spring constant of the system is insensitive to either of them
and changes only by 0.5%. Finally, we show that the comb-drive actuator
can be used to switch between different coupling rates with a frequency of at
least 10 kHz.Comment: 5 pages, 4 figures, 1 tabl
Limits on the Mass, Velocity and Orbit of PSR J19336211
We present a high-precision timing analysis of PSR J19336211, a
millisecond pulsar (MSP) with a 3.5-ms spin period and a white dwarf (WD)
companion, using data from the Parkes radio telescope. Since we have accurately
measured the polarization properties of this pulsar we have applied the matrix
template matching approach in which the times of arrival are measured using
full polarimetric information. We achieved a weighted root-mean-square timing
residuals (rms) of the timing residuals of 1.23 , 15.5
improvement compared to the total intensity timing analysis. After studying the
scintillation properties of this pulsar we put constraints on the inclination
angle of the system. Based on these measurements and on mapping we put
a 2- upper limit on the companion mass (0.44 M). Since this
mass limit cannot reveal the nature of the companion we further investigate the
possibility of the companion to be a He WD. Applying the orbital period-mass
relation for such WDs, we conclude that the mass of a He WD companion would be
about 0.260.01 M which, combined with the measured mass function
and orbital inclination limits, would lead to a light pulsar mass
1.0 M. This result seems unlikely based on current neutron star
formation models and we therefore conclude that PSR J19336211 most likely
has a CO WD companion, which allows for a solution with a more massive pulsar
Optimizing Pulsar Timing Arrays to Maximize Gravitational Wave Single Source Detection: a First Cut
Pulsar Timing Arrays (PTAs) use high accuracy timing of a collection of low
timing noise pulsars to search for gravitational waves in the microhertz to
nanohertz frequency band. The sensitivity of such a PTA depends on (a) the
direction of the gravitational wave source, (b) the timing accuracy of the
pulsars in the array and (c) how the available observing time is allocated
among those pulsars. Here, we present a simple way to calculate the sensitivity
of the PTA as a function of direction of a single GW source, based only on the
location and root-mean-square residual of the pulsars in the array. We use this
calculation to suggest future strategies for the current North American
Nanohertz Observatory for Gravitational Waves (NANOGrav) PTA in its goal of
detecting single GW sources. We also investigate the affects of an additional
pulsar on the array sensitivity, with the goal of suggesting where PTA pulsar
searches might be best directed. We demonstrate that, in the case of single GW
sources, if we are interested in maximizing the volume of space to which PTAs
are sensitive, there exists a slight advantage to finding a new pulsar near
where the array is already most sensitive. Further, the study suggests that
more observing time should be dedicated to the already low noise pulsars in
order to have the greatest positive effect on the PTA sensitivity. We have made
a web-based sensitivity mapping tool available at http://gwastro.psu.edu/ptasm.Comment: 14 pages, 3 figures, accepted by Ap
On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array
We search for the signature of an isotropic stochastic gravitational-wave
background in pulsar timing observations using a frequency-domain correlation
technique. These observations, which span roughly 12 yr, were obtained with the
64-m Parkes radio telescope augmented by public domain observations from the
Arecibo Observatory. A wide range of signal processing issues unique to pulsar
timing and not previously presented in the literature are discussed. These
include the effects of quadratic removal, irregular sampling, and variable
errors which exacerbate the spectral leakage inherent in estimating the steep
red spectrum of the gravitational-wave background. These observations are found
to be consistent with the null hypothesis, that no gravitational-wave
background is present, with 76 percent confidence. We show that the detection
statistic is dominated by the contributions of only a few pulsars because of
the inhomogeneity of this data set. The issues of detecting the signature of a
gravitational-wave background with future observations are discussed.Comment: 12 pages, 8 figures, 7 tables, accepted for publication in MNRA
Extremely high precision VLBI astrometry of PSR J0437-4715 and implications for theories of gravity
Using the recently upgraded Long Baseline Array, we have measured the
trigonometric parallax of PSR J0437-4715 to better than 1% precision, the most
precise pulsar distance determination made to date. Comparing this VLBI
distance measurement to the kinematic distance obtained from pulsar timing,
which is calculated from the pulsar's proper motion and apparent rate of change
of orbital period, gives a precise limit on the unmodeled relative acceleration
between the Solar System and PSR J0437-4715, which can be used in a variety of
applications. Firstly, it shows that Newton's gravitational constant G is
stable with time (\dot{G}/G = (-5 +- 26) x 10^{-13} yr^{-1}, 95% confidence).
Secondly, if a stochastic gravitational wave background existed at the
currently quoted limit, this null result would fail ~50% of the time. Thirdly,
it excludes Jupiter-mass planets within 226 AU of the Sun in 50% of the sky
(95% confidence). Finally, the ~1% agreement of the parallax and orbital period
derivative distances provides a fundamental confirmation of the parallax
distance method upon which all astronomical distances are based.Comment: 11 pages, 1 Figure, submitted to ApJ
A possible signature of cosmic neutrino decoupling in the nHz region of the spectrum of primordial gravitational waves
In this paper we study the effect of cosmic neutrino decoupling on the
spectrum of cosmological gravitational waves (GWs). At temperatures T>>1 MeV,
neutrinos constitute a perfect fluid and do not hinder GW propagation, while
for T<<1 MeV they free-stream and have an effective viscosity that damps
cosmological GWs by a constant amount. In the intermediate regime,
corresponding to neutrino decoupling, the damping is frequency-dependent. GWs
entering the horizon during neutrino decoupling have a frequency f ~ 1 nHz,
corresponding to a frequency region that will be probed by Pulsar Timing Arrays
(PTAs). In particular, we show how neutrino decoupling induces a spectral
feature in the spectrum of cosmological GWs just below 1 nHz. We briefly
discuss the conditions for a detection of this feature and conclude that it is
unlikely to be observed by PTAs.Comment: 11 pages, 2 figures. V2: References Adde
Family Health Development in Life Course Research: A Scoping Review of Family Functioning Measures
BACKGROUND AND OBJECTIVES: Our objective is to identify common family functioning measurement tools and assess their compatibility with family-health development and life-course perspectives. METHODS: Data sources include PubMed, ERIC, CINAHL, Families and Societies Worldwide, PsychInfo, Web of Science, PsychNet, and Health and Psychosocial Instruments. Title and abstract screening and full-text review of articles were conducted by multiple reviewers based on prespecified inclusion criteria. Data extraction focused on features of identified measurements tools, including: (1) name (2) domains of family functioning measured, (3) established psychometric properties, and (4) original context of psychometric evaluation (eg, details about the study sample). RESULTS: Of the 50 measurement tools identified, 94% measured organizational patterns (eg, flexibility, connectedness, or resources), 46% measured belief systems (eg, making meaning of adversity, or positive outlook), and 54% measured communication processes (eg, open emotional sharing, or collaborative problem-solving). CONCLUSIONS: Existing measures of family functioning can aid life-course researchers in understanding family processes as contexts for health and well-being. There also remain opportunities to refine or develop measures of family functioning more compatible with a life-course perspective that assess family processes (1) at various life stages; (2) with various backgrounds, identities, structures, and experiences; and (3) embedded in or impacted by various contexts that may facilitate or hinder family functioning
- …