We present a study on the uniformity of the pseudomagnetic field in graphene
as a function of the relative orientation between the graphene lattice and
straining directions. For this, we strained a regular micron-sized graphene
hexagon by deforming it symmetrically by displacing three of its edges. By
simulations, we found that the pseudomagnetic field is strongest if the strain
is applied perpendicular to the armchair direction of graphene. For a hexagon
with a side length of 1 μm, the pseudomagnetic field has a maximum of
1.2 T for an applied strain of 3.5% and it is uniform (variance <1%) within
a circle with a diameter of ∼520 nm. This diameter is on the order of the
typical diameter of the laser spot in a state-of-the-art confocal Raman
spectroscopy setup, which suggests that observing the pseudomagnetic field in
measurements of shifted magneto-phonon resonance is feasible.Comment: 7 pages, 5 figure