107 research outputs found

    Experimental phage therapy of burn wound infection : difficult first steps

    Get PDF
    Antibiotic resistance has become a major public health problem and the antibiotics pipeline is running dry. Bacteriophages (phages) may offer an ‘innovative’ means of infection treatment, which can be combined or alternated with antibiotic therapy and may enhance our abilities to treat bacterial infections successfully. Today, in the Queen Astrid Military Hospital, phage therapy is increasingly considered as part of a salvage therapy for patients in therapeutic dead end, particularly those with multidrug resistant infections. We describe the application of a well-defined and quality controlled phage cocktail, active against Pseudomonas aeruginosa and Staphylococcus aureus, on colonized burn wounds within a modest clinical trial (nine patients, 10 applications), which was approved by a leading Belgian Medical Ethical Committee. No adverse events, clinical abnormalities or changes in laboratory test results that could be related to the application of phages were observed. Unfortunately, this very prudent ‘clinical trial’ did not allow for an adequate evaluation of the efficacy of the phage cocktail. Nevertheless, this first ‘baby step’ revealed several pitfalls and lessons for future experimental phage therapy and helped overcome the psychological hurdles that existed to the use of viruses in the treatment of patients in our burn unit

    Stability of bacteriophages in burn wound care products

    Get PDF
    Bacteriophages could be used along with burn wound care products to enhance antimicrobial pressure during treatment. However, some of the components of the topical antimicrobials that are traditionally used for the prevention and treatment of burn wound infection might affect the activity of phages. Therefore, it is imperative to determine the counteraction of therapeutic phage preparations by burn wound care products before application in patients. Five phages, representatives of two morphological families (Myoviridae and Podoviridae) and active against 3 common bacterial burn wound pathogens (Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus) were tested against 13 different products commonly used in the treatment of burn wounds. The inactivation of the phages was quite variable for different phages and different products. Majority of the anti-infective products affected phage activity negatively either immediately or in the course of time, although impact was not always significant. Products with high acidity had the most adverse effect on phages. Our findings demonstrate that during combined treatment the choice of phages and wound care products must be carefully defined in advance

    Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii

    Get PDF
    Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections

    Introducing yesterday's phage therapy in today's medicine

    Get PDF
    The worldwide emergence of 'superbugs' and a dry antibiotic pipeline threaten modern society with a return to the preantibiotic era. Phages - the viruses of bacteria - could help fight antibiotic-resistant bacteria. Phage therapy was first attempted in 1919 by Felix d'Herelle and was commercially developed in the 1930s before being replaced by antibiotics in most of the western world. The current antibiotic crisis fueled a worldwide renaissance of phage therapy. The inherent potential of phages as natural biological bacterium controllers can only be put to use if the potential of the coevolutionary aspect of the couplet phage-bacterium is fully acknowledged and understood, including potential negative consequences. We must learn from past mistakes and set up credible studies to gather the urgently required data with regard to the efficacy of phage therapy and the evolutionary consequences of its (unlimited) use, Unfortunately, our current pharmaceutical economic model, implying costly and time-consuming medicinal product development and marketing, and requiring strong intellectual property protection, is not compatible with traditional sustainable phage therapy. A specific framework with realistic production and documentation requirements, which allows a timely (rapid) supply of safe, tailor-made, natural bacteriophages to patients, should be developed. Ultimately, economic models should be radically reshaped to cater for more sustainable approaches such as phage therapy. This is one of the biggest challenges faced by modern medicine and society as a whole

    Selection and characterization of a candidate therapeutic bacteriophage that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany

    Get PDF
    In 2011, a novel strain of O104:H4 Escherichia coli caused a serious outbreak of foodborne hemolytic uremic syndrome and bloody diarrhea in Germany. Antibiotics were of questionable use and 54 deaths occurred. Candidate therapeutic bacteriophages that efficiently lyse the E. coli O104:H4 outbreak strain could be selected rather easily from a phage bank or isolated from the environment. It is argued that phage therapy should be more considered as a potential armament against the growing threat of (resistant) bacterial infection

    Development of a qPCR platform for quantification of the five bacteriophages within bacteriophage cocktail 2 (BFC2)

    Get PDF
    To determine phage titers accurately, reproducibly and in a non-laborious and cost-effective manner, we describe the development of a qPCR platform for molecular quantification of five phages present in bacteriophage cocktail 2 (BFC2). We compared the performance of this molecular approach, with regard to quantification and reproducibility, with the standard culture-based double agar overlay method (DAO). We demonstrated that quantification of each of the five phages in BFC2 was possible by means of qPCR, without prior DNA extraction, but yields were significantly higher in comparison to DAO. Although DAO is assumed to provide an indication of the number of infective phage particles, whereas qPCR only provides information on the number of phage genomes, the difference in yield (qPCR/DAO ratio) was observed to be phage-dependent and appeared rather constant for all phages when analyzing different (freshly prepared) stocks of these phages. While DAO is necessary to determine sensitivity of clinical strains against phages in clinical applications, qPCR might be a valid alternative for rapid and reproducible quantification of freshly prepared stocks, after initial establishment of a correction factor towards DAO

    Taking Bacteriophage Therapy Seriously:A Moral Argument

    Get PDF
    The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need

    Evaluation of the Stability of Bacteriophages in Different Solutions Suitable for the Production of Magistral Preparations in Belgium

    Get PDF
    In Belgium, the incorporation of phages into magistral preparations for human application has been permitted since 2018. The stability of such preparations is of high importance to guarantee quality and efficacy throughout treatments. We evaluated the ability to preserve infectivity of four different phages active against three different bacterial species in five different buffer and infusion solutions commonly used in medicine and biotechnological manufacturing processes, at two different concentrations (9 and 7 log pfu/mL), stored at 4 °C. DPBS without Ca2+ and Mg2+ was found to be the best option, compared to the other solutions. Suspensions with phage concentrations of 7 log pfu/mL were unsuited as their activity dropped below the effective therapeutic dose (6-9 log pfu/mL), even after one week of storage at 4 °C. Strong variability between phages was observed, with Acinetobacter baumannii phage Acibel004 being stable in four out of five different solutions. We also studied the long term storage of lyophilized staphylococcal phage ISP, and found that the titer could be preserved during a period of almost 8 years when sucrose and trehalose were used as stabilizers. After rehydration of the lyophilized ISP phage in saline, the phage solutions remained stable at 4 °C during a period of 126 days

    Potential release of aluminum and other metals by food-grade aluminum foil used for skin allograft cryo preservation

    Get PDF
    Since 1991, the skin bank of the Queen Astrid Military Hospital uses food-grade aluminum foil as a primary support for storing cryo preserved human donor skin (511 donors). The possible release of heavy metals into the cryo preservation media (30% (v/v) glycerol in physiological water) and the possible impact this release could have on the quality of the cryo preserved donor skin was evaluated. Aluminum was the principal detection target. Possible contaminants of the aluminum foil as such (arsenic, cadmium, chromium and lead) were also investigated. The evaluation was set up after a Belgian Competent Authority inspection remark. Aluminum was detected at a concentration of 1.4 mg/l, arsenic and lead were not detected, while cadmium and chromium were detected in trace element quantities. An histological analysis revealed no differences between cryo preserved and fresh donor skin. No adverse reactions in patients, related to the presence of aluminum or heavy metal traces, were reported since the introduction of the cryo preserved donor skin in our burn wound centre
    • …
    corecore