8 research outputs found

    Lacrimo-Auriculo-Dento-Digital Syndrome Is Caused by Reduced Activity of the Fibroblast Growth Factor 10 (FGF10)-FGF Receptor 2 Signaling Pathway▿

    No full text
    Lacrimo-auriculo-dento-digital (LADD) syndrome is characterized by abnormalities in lacrimal and salivary glands, in teeth, and in the distal limbs. Genetic studies have implicated heterozygous mutations in fibroblast growth factor 10 (FGF10) and in FGF receptor 2 (FGFR2) in LADD syndrome. However, it is not clear whether LADD syndrome mutations (LADD mutations) are gain- or loss-of-function mutations. In order to reveal the molecular mechanism underlying LADD syndrome, we have compared the biological properties of FGF10 LADD and FGFR2 LADD mutants to the activities of their normal counterparts. These experiments show that the biological activities of three different FGF10 LADD mutants are severely impaired by different mechanisms. Moreover, haploinsufficiency caused by defective FGF10 mutants leads to LADD syndrome. We also demonstrate that the tyrosine kinase activities of FGFR2 LADD mutants expressed in transfected cells are strongly compromised. Since tyrosine kinase activity is stimulated by ligand-induced receptor dimerization, FGFR2 LADD mutants may also exert a dominant inhibitory effect on signaling via wild-type FGFR2 expressed in the same cell. These experiments underscore the importance of signal strength in mediating biological responses and that relatively small changes in receptor signaling may influence the outcome of developmental processes in cells or organs that do not possess redundant signaling pathway

    Testis determination requires a specific FGFR2 isoform to repress FOXL2

    No full text
    Male sex determination inmammals relies on sex determining regionY-mediated upregulation of sex determining region-box 9 (SOX9) expression in XY gonads, whereas Wnt family member (WNT)/ R-spondin 1 signaling and forkhead box L2 (FOXL2) drive female sex determination in XX gonads. Fibroblast growth factor (FGF) 9 signaling ensures sustained SOX9 expression through repression of one of the ovarian pathways (WNT signaling), whereas the significance of FGF-mediated repression of the FOXL2 pathway has not been studied. Previously, we demonstrated that FGFR2 is the receptor for FGF9 in the XY gonad. Whether a specific isoform (FGFR2b or FGFR2c) is required was puzzling. Here, we show that FGFR2c is required formale sex determination. Initially, in developingmouse embryos at 12.5 to 13.5 days postcoitum (dpc), XY Fgfr2c gonads appear as ovotestes, with SOX9 and FOXL2 expression predominantly localized to the posterior and anterior gonadal poles, respectively. However, by 15.5 dpc, XY Fgfr2c gonads show completemale-to-female sex reversal, evident by the lack of SOX9 and ectopic expression of FOXL2 throughout the gonads. Furthermore, ablation of the Foxl2 gene leads to partialor complete rescue of gonadal sex reversal inXYFgfr2cmice. Togetherwithprevious findings, our data suggest that testis determination involves FGFR2c-mediated repression of both the WNT4- and FOXL2-driven ovarian-determining pathways

    Deletion of Frs2α from the ureteric epithelium causes renal hypoplasia

    No full text
    Fibroblast growth factor receptor 2 (Fgfr2) signaling is critical in maintaining ureteric branching architecture and mesenchymal stromal morphogenesis in the kidney. Fibroblast growth factor receptor substrate 2α (Frs2α) is a major docking protein for Fgfr2 with downstream targets including Ets variant (Etv) 4 and Etv5 in other systems. Furthermore, global deletion of Frs2α causes early embryonic lethality. The purpose of the study was to determine the role of Frs2α in mediating Fgfr2 signaling in the ureteric epithelium. To that end, we generated mice with conditional deletion of Frs2α in the ureteric epithelium (Frs2αUB−/−) and mice with point mutations in the Frs2α binding site of Fgfr2 (Fgfr2LR/LR). Frs2αUB−/− mice developed mild renal hypoplasia characterized by decreased ureteric branching morphogenesis but maintained normal overall branching architecture and had normal mesenchymal stromal development. Reduced nephron endowment in postnatal mutant mice was observed, corresponding with the reduction in branching morphogenesis. Furthermore, there were no apparent renal abnormalities in Fgfr2LR/LR mice. Interestingly, Etv4 and Etv5 expression was unaltered in Frs2αUB−/− mice, as was Sprouty1, an antagonist of Frs2α signaling. However, Ret and Wnt11 (molecules critical for ureteric branching morphogenesis) mRNA levels were lower in mutants vs. controls. Taken together, these findings suggest that Fgfr2 signals through adapter molecules other than Frs2α in the ureteric epithelium. Furthermore, Frs2α may transmit signals through other receptor kinases present in ureteric epithelium. Finally, the renal hypoplasia observed in Frs2αUB−/− mice is likely secondary to decreased Ret and Wnt11 expression

    Mutations in different components of FGF signaling in LADD syndrome.

    No full text
    Contains fulltext : 50020.pdf (publisher's version ) (Closed access)Lacrimo-auriculo-dento-digital (LADD) syndrome is characterized by lacrimal duct aplasia, malformed ears and deafness, small teeth and digital anomalies. We identified heterozygous mutations in the tyrosine kinase domains of the genes encoding fibroblast growth factor receptors 2 and 3 (FGFR2, FGFR3) in LADD families, and in one further LADD family, we detected a mutation in the gene encoding fibroblast growth factor 10 (FGF10), a known FGFR ligand. These findings increase the spectrum of anomalies associated with abnormal FGF signaling
    corecore