200 research outputs found

    TSCH and RPL Joining Time Model for Industrial Wireless Sensor Networks

    Full text link
    [EN] Wireless sensor networks (WSNs) play a key role in the ecosystem of the Industrial Internet of Things (IIoT) and the definition of today's Industry 4.0. These WSNs have the ability to sensor large amounts of data, thanks to their easy scalability. WSNs allow the deployment of a large number of self-configuring nodes and the ability to automatically reorganize in case of any change in the topology. This huge sensorization capacity, together with its interoperability with IP-based networks, allows the systems of Industry 4.0 to be equipped with a powerful tool with which to digitalize a huge amount of variables in the different industrial processes. The IEEE 802.15.4e standard, together with the access mechanism to the Time Slotted Channel Hopping medium (TSCH) and the dynamic Routing Protocol for Low-Power and Lossy Networks (RPL), allow deployment of networks with the high levels of robustness and reliability necessary in industrial scenarios. However, these configurations have some disadvantages in the deployment and synchronization phases of the networks, since the time it takes to synchronize the nodes is penalized compared to other solutions in which access to the medium is done randomly and without channel hopping. This article proposes an analytical model to characterize the behavior of this type of network, based on TSCH and RPL during the phases of deployment along with synchronization and connection to the RPL network. Through this model, validated by simulation and real tests, it is possible to parameterize different configurations of a WSN network based on TSCH and RPL.This work has been supported by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-B-I00), which is partially funded by AEI, FEDER and EU.Vera-PĂ©rez, J.; Silvestre-Blanes, J.; Sempere Paya, VM. (2021). TSCH and RPL Joining Time Model for Industrial Wireless Sensor Networks. Sensors. 21(11):1-17. https://doi.org/10.3390/s21113904117211

    Multihop Latency Model for Industrial Wireless Sensor Networks Based on Interfering Nodes

    Full text link
    [EN] Emerging Industry 4.0 applications require ever-increasing amounts of data and new sources of information to more accurately characterize the different processes of a production line. Industrial Internet of Things (IIoT) technologies, and in particular Wireless Sensor Networks (WSNs), allow a large amount of data to be digitized at a low energy cost, thanks to their easy scalability and the creation of meshed networks to cover larger areas. In industry, data acquisition systems must meet certain reliability and robustness requirements, since other systems such as predictive maintenance or the digital twin, which represents a virtual mapping of the system with which to interact without the need to alter the actual installation, may depend on it. Thanks to the IEEE 802.15.4e standard and the use of Time-Slotted Channel Hopping (TSCH) as the medium access mechanism and IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) as the routing protocol, it is possible to deploy WSNs with high reliability, autonomy, and minimal need for re-configuration. One of the drawbacks of this communication architecture is the low efficiency of its deployment process, during which it may take a long time to synchronize and connect all the devices in a network. This paper proposes an analytical model to characterize the process for the creation of downstream routes in RPL, whose transmission of multi-hop messages can present complications in scenarios with a multitude of interfering nodes and resource allocation based on minimal IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH). This type of multi-hop message exchange has a different behaviour than the multicast control messages exchanged during the synchronization phase and the formation of upstream routes, since the number of interfering nodes changes in each retransmission.The research leading to these results is part of the i4Q project that has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement No. 958205.Vera-PĂ©rez, J.; Silvestre-Blanes, J.; Sempere Paya, VM.; Cuesta Frau, D. (2021). Multihop Latency Model for Industrial Wireless Sensor Networks Based on Interfering Nodes. Applied Sciences. 11(19):1-15. https://doi.org/10.3390/app11198790115111

    Path Quality Estimator for 802.15.4e TSCH Fast Deployment Tool

    Get PDF
    [EN] This paper introduces a novel quality estimator that uses different metrics to decide the best path towards the root in Wireless Sensor Networks. The different metrics are assessed at medium access control layer (MAC), under the IEEE 802.15.4 standard, and are used at network layer, enhancing the best path selection process done by the routing protocol, and at the application layer, enabling visual quality indicators in the nodes. This quality function is used during deployment stage; ensuring nodes are located optimally and nimbly. This mechanism will help WSN¿s adoption in Industrial Internet of Things applications.This work is supported by IVACE (Insituto Valenciano de Competitividad Empresarial) through FEDER funding (exp. IMDEEA/2017/103).Vera-Pérez, J.; Todoli Ferrandis, D.; Santonja Climent, S.; Silvestre-Blanes, J.; Sempere Paya, VM. (2018). Path Quality Estimator for 802.15.4e TSCH Fast Deployment Tool. Telfor Journal (Online). 10(1):2-7. https://doi.org/10.5937/telfor1801002VS27101O. Gaddour, A. Koubâa, S. Chaudhry, M. Tezeghdanti, R. Chaari and M. Abid, 'Simulation and Performance Evaluation of DAG Construction with RPL,' in IEEE Third International Conference on Communications and Networking (ComNet), pp. 1-8, 2012.;IETF, 'RFC 6552 - Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL),' 2012.;IETF, 'RFC 6719 - The Minimum Rank with Hysteresis Objective Function,' 2012.;N. Pradeska, Widyawan, W. Najib and S. S. Kusumawardani, 'Performance Analysis of Objective Function MRHOF and OF0 in Routing Protocol RPL IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN),' in 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2016.;P. O. Kamgueu, E. Nataf, T. D. Ndié and O. Festor, 'Energy-based routing metric for RPL,' Doctoral dissertation, INRIA, 2013.;H.-S. Kim, J. Paek and S. Bahk, 'QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications,' in 12th Annual IEEE International Conference on Sensing, Communication and Networking (SECON), Seattle, WA, USA, 2015.;P. Gonizzi, R. Monica and G. Ferrari, 'Design and evaluation of a delay-efficient RPL routing metric,' in 9th International Wireless Communication and Mobile Computing Conference (IWCMC), Sardinia, Italy, 2013.;IETF, 'RFC 6551 - Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks,' 2012.;N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A. Boano and M. Alves, 'Radio link quality estimation in wireless sensor networks: A survey,' ACM Transactions on Sensor Networks (TOSN), vol. 8 (4), 2012.;P. Karkazis, H. C. Leligou, L. Sarakis, T. Zahariadis, P. Trakadas, T. H. Velivassaki and C. Capsalis, 'Design of primary and composite routing metrics for RPL-compliant Wireless Sensor Networks,' in International Conference on Telecommunications and Multimedia (TEMU), Chania, Greece, 2012.;N. Baccour, A. Koubâa, H. Youssef, M. B. Jamâa, D. d. Rosário, M. Alves and L. B. Becker, 'F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks,' in European Conference on Wireless Sensor Networks (EWSN), Coimbra, Portugal, 2010.;S. Rekik, N. Baccour, M. Jmaiel and K. Drira, 'Holistic link quality estimation-based routing metric for RPL networks in smart grids,' in IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016.;O. Gaddour, A. Koubaa, N. Baccour and M. Abid, 'OF-FL: QoSaware fuzzy logic objective function for the RPL routing protocol,' in 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Hammamet, Tunisia, 2014.;IETF, 'RFC 8180 - Minimal IPv6 over TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration,' 2017.;M. G. Amor, A. Koubâa, E. Tovar and M. Khalgui, 'Cyber-OF: An Adaptative Cyber-Physical Objective Function for Smart Cities Applications,' in 28th Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 2016.;J. Vera-Pérez, D. Todolí-Ferrandis, J. Silvestre-Blanes, S. SantonjaCliment and V. Sempere-Paya, 'Path quality estimator for wireless sensor networks fast deployment tool,' 2017 25th Telecommunication Forum (TELFOR), Belgrade, 2017, pp. 1-4.

    Double-beam parallel-plate slot antenna

    Full text link
    This paper presents the design and prototyping of a double-beam linear polarized parallel-plate slot antenna at 12-GHz band. Each beam is separated 27.7/spl deg/ and 27.3/spl deg/, respectively, from broadside direction. Two different radiation patterns are generated, exciting the parallel plate from opposite sides. The radiating elements are composed by three parallel slots, the central slot is close to the resonance, while the side ones are designed to minimize the reflection inside the parallel plate. The length of the slots in the same row is kept constant (periodic walls), and the distance between columns is equal to 0.7 times the wavelength. The designs of the feeding networks and the design of the array of slots generate both beams, pointing toward Hispasat and Astra satellites simultaneously, at the same frequency band. The feeding networks are two microstrip circuits that excite two linear arrays of 24 patches, placed at both sides of the antenna, and generate both quasi-TEM mode plane waves inside the parallel-plate waveguide, propagating from one side to the other

    Identification of the key excreted molecule by Lactobacillus fermentum related to host iron absorption

    Get PDF
    We have taken a vital step towards understanding why probiotic bacteria increase iron absorption in the gastrointestinal tract. We show here that Lactobacillus fermentum, one of the main probiotics of the microbiota, exhibits an extraordinary ferric-reducing activity. This activity is predominantly due to an excreted molecule: p-hydroxyphenyllactic acid (HPLA). Reduction of Fe(III) to Fe(II) is essential for iron absorption in the gastrointestinal tract. By reducing Fe(III), HPLA boosts Fe(II) absorption through the DMT1 channels of enterocytes. An in vitro experiment tested and confirmed this hypothesis. This discovery opens new avenues for the treatment of iron deficiency in humans, one of the most common and widespread nutritional disorders in the world

    Safety and Security oriented design for reliable Industrial IoT applications based on WSNs

    Full text link
    [EN] Internet of Things based technologies are enabling the digital transformation in many sectors. However, in order to use this type of solutions, such as wireless sensor networks, in scenarios like transport, industry or smart cities, the deployed networks must meet sensible safety and security requirements. This article describes a Wireless Sensor Network design that applies multi-layered mechanisms and tools to ensure security, safety and reliability while maintaining usability in Rail and Industrial IoT scenarios. The proposed solution provides guidelines for choosing the best implementations given usual restrictions, offering a modular stack so it can be combined with other solutions.This work has been supported by the SCOTT project (Secure COnnected Trustable Things) (www.scottproject.eu), which has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737422. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, and from Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium and Norway. It has also been funded by Generalitat Valenciana through the ÂżInstituto Valenciano de Competitividad Empresarial Âż IVACEÂż, and by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-BI00), which is partially funded by AEI, FEDER and EU.Vera-PĂ©rez, J.; Todoli Ferrandis, D.; Sempere Paya, VM.; Ponce Tortajada, R.; Mujica, G.; Portilla, J. (2019). Safety and Security oriented design for reliable Industrial IoT applications based on WSNs. IEEE. 1774-1781. https://doi.org/10.1109/ETFA.2019.8869204S1774178

    Design method, analysis and prototypes of radial line slot antennas

    Get PDF
    The authors propose a design procedure and an analysis method for radial line slot antennas. Several prototypes have been fabricated to validate these methods. The design procedure is very simple, and can be included in software. The analysis method is required to be very fast, in order to design this kind of antennas. It considers only one variable per slot and calculates the coupling between the elements of the antenna. It has been validated with measurements and method of moment simulations. The first prototypes are for TV-DBS reception at 12.1 GHz. They have a narrow broadside beam. The last prototype is a monopulse antenna. The monopulse capability can be obtained by comparing two simultaneous beams. Two simultaneous beams are obtained, a sum one and a difference one

    Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study

    Get PDF
    The impact of the widely used herbicide glyphosate has been mainly studied in terrestrial weed control, laboratory bioassays, and field studies focusing on invertebrates, amphibians, and fishes. Despite the importance of phytoplankton and periphyton communities at the base of the aquatic food webs, fewer studies have investigated the effects of glyphosate on freshwater microbial assemblages. We assessed the effect of the commercial formulation Roundup using artificial earthen mesocosms. The herbicide was added at three doses: a control (without Roundup) and two treatments of 6 and 12 mg/L of the active ingredient (glyphosate). Estimates of the dissipation rate (k) were similar in the two treatments (half-lives of 5.77 and 7.37 d, respectively). The only two physicochemical parameters showing statistically significant differences between treatments and controls were the downward vertical spectral attenuation coefficient kd(λ), where λ is wavelength, and total phosphorus concentration (TP). At the end of the experiment, the treated mesocosms showed a significant increase in the ratio kd(490 nm)/kd(550 nm) and an eightfold increase in TP. Roundup affected the structure of phytoplankton and periphyton assemblages. Total micro- and nanophytoplankton decreased in abundance in treated mesocosms. In contrast, the abundance of picocyanobacteria increased by a factor of about 40. Primary production also increased in treated mesocosms (roughly by a factor of two). Similar patterns were observed in the periphytic assemblages, which showed an increased proportion of dead : live individuals and increased abundances of cyanobacteria (about 4.5-fold). Interestingly, the observed changes in the microbial assemblages were captured by the analysis of the pigment composition of the phytoplankton, the phytoplankton absorption spectra, and the analysis of the optical properties of the water. The observed changes in the structure of the microbial assemblages are more consistent with a direct toxicological effect of glyphosate rather than an indirect effect mediated by phosphorus enrichment.Fil: Pérez, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Torremorell, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Mugni, Hernan Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología ; ArgentinaFil: Rodriguez, Patricia Laura. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Vera, Maria Solange. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Do Nascimento, Mauro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Allende, Luz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bustingorry, Jose Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Escaray, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Ferraro, Marcela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Izaguirre, Irina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Pizarro, Haydee Norma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Bonetto, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología ; ArgentinaFil: Morris, Donald P.. Lehigh University; Estados UnidosFil: Zagarese, Horacio Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentin

    Endangered subspecies of the reed bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures

    Full text link
    In the Iberian Peninsula, populations of two subspecies of the Reed Bunting Emberiza schoeniclus have become increasingly fragmented during the last decades when suitable habitats have been lost and/or the populations have gone extinct. Presently, both subspecies are endangered. We estimated the amount of genetic variation and population structure in order to define conservation units and management practices for these populations. We found that the subspecies lusitanica has clearly reduced genetic variation in nuclear and mitochondrial markers, has a drastically small effective population size and no genetic differentiation between populations. In contrast, the subspecies witherbyi is significantly structured, but the populations still hold large amounts of variation even though the effective population sizes are smaller than in the non-endangered subspecies schoeniclus. We suggest several management units for the Iberian populations. One unit includes subspecies lusitanica as a whole; the other three units are based on genetically differentiated populations of witherbyi. The most important genetic conservation measure in the case of lusitanica is to preserve the remaining habitats in order to at least maintain the present levels of gene flow. In the case of the three management units within witherbyi, the most urgent conservation measure is to improve the habitat quality to increase the population sizes.This project would not have been possible without the help of many people, among them A. Rodriguez, D. Bigas, P. Vicens, J. Segura, M. Suarez, J. L. Martinez, V. Urios, M. Rebassa, C. Torralvo, J. L. Hernandez, M. Carregal, P. Alcazar, J. L. Canto, J. Ramirez,, D. Alonso, J. Arizaga, F. Arcos, H. Rguibi, Acciona-Trasnmediterranea, and many others who helped us with the difficult task of sampling Reed Buntings and who sent us their samples. We apologize if we have forgotten someone. "Arcea Xestion de Recursos Naturais S. L." was of inestimable value in obtaining most of the samples from Galicia in 2008, in getting funding from the "Xunta de Galicia", and in helping us with the discussion of the results. We would like to thank the authorities of Daimiel National Park, Marjal Pego-Oliva Natural Park, S'Albufera de Mallorca Natural Park, Delta de L'Ebre Natural Park, "Consejeria de Medio Ambiente y Desarrollo Rural de Castilla La Mancha", "Servicio de Conservacion de la Diversidad del Gobierno de Navarra", "Direccion Xeral de Conservacion da Natureza de la Xunta Galicia and "Servei de Conservacio de la Biodiversitat de la Generalitat Valenciana" for the facilities to work in protected areas and for the appropriate permits to obtain the samples. The people from these protected areas were always very nice and helped us with the fieldwork. This study was funded by projects CGL2005-02041/BOS of the "Ministerio de Educacion y Ciencia" of Spain, and SC000207, Orden 14-12-2005 of the "Consejeria de Medio Ambiente y Desarrollo Rural de la Junta de Castilla La Mancha", Spain, through the "Ayudas para la realizacion de actuaciones de apoyo a la conservacion de las areas y recursos naturales protegidos, Orden 14-12-2005". The "Direccion Xeral de Conservacion da Natureza de la Xunta de Galicia", Spain, funded part of the fieldwork in NW Iberian Peninsula during the development of the Recovery plan for Emberiza schoeniclus lusitanica in Galicia. The experiments comply the current laws of the countries (Spain, Portugal and Finland) where they were done.Kvist, L.; Ponnikas, S.; Belda Perez, EJ.; Encabo, I.; Martinez, E.; Onrubia, A.; Hernandez, JM.... (2011). Endangered subspecies of the reed bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures. Journal of Ornithology. 152(3):681-693. doi:10.1007/s10336-011-0646-9S6816931523Atienza JC, Copete JL (2004) Escribano palustre iberoriental/escribano palustre iberoccidental. In: Madroño A (ed) Libro rojo de las aves de España Ministerio de Medio Ambiente, Madrid, pp 378–379Belda EJ, Encabo JL, Hernández JM et al (2008) Requerimientos y uso del hábitat del escribano palustre iberoriental Emberiza schoeniclus witherbyi. In: Barba E, Monrós JS, Belda EJ, Andreu J (eds) XII Congreso Nacional y IX Iberoamericano de Etología Ponencias y comunicaciones. Publicaciones de la Universidad de Valencia, Valencia, p 67Bensch S, Price T, Kohn J (1997) Isolation and characterization of microsatellite loci in a Phylloscopus warbler. Mol Ecol 6:91–92Byers C, Olsson U, Curson J (1994) Buntings and Sparrows—a guide to the Buntings and North American Sparrows. Pica Press, SussexCaughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014Cramp S, Perrins CM (1994) The birds of the western palearctic, vol 9. Oxford University Press, OxfordCrandall KA, Bininda-Edmonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318Graputto A, Pilastro A, Marin G (1998) Genetic variation and bill size dimorphism in a passerine bird, the reed bunting Emberiza schoeniclus. Mol Ecol 7:1173–1182Griffith SC, Stewart IRK, Dawson DA et al (1999) Contrasting levels of extra-pair paternity in mainland and island populations of the house sparrow (Passer domesticus): is there an’island effect’. Biol J Linn Soc 68:303–316Hanotte O, Zanon C, Pugh A et al (1994) Isolation and characterization of microsatellite loci in a passerine birds: the reed bunting Emberiza schoeniclus. Mol Ecol 3:529–530Hey J, Waples RS, Arnold ML et al (2003) Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol 18:597–603Keane TM, Naughton TJ, McInerney JO (2007) MultiPhyl: A high throughput phylogenomics webserver using distributed computing. Nucl Acids Res 35:W33–W37Kuhner MK (2006) Lamarc 20: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770Kvist L, Martens J, Higuchi H et al (2003) Evolution and genetic structure of the great tit (Parus major) complex. Proc R Soc Lond B 270:1447–1454Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460Matessi G (1999) Evolutionary patterns in European populations of reed bunting (Emberiza schoeniclus ssp). Dissertation, University of BolognaMayer C, Schiegg K, Pasinelli G (2008) Isolation, characterization and multiplex genotyping of 11 autosomal and four sex-linked microsatellite loci in the reed bunting, Emberiza schoeniclus (Emberizidae, Aves). Mol Ecol Notes 8:332–334Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375Ovenden J, Peel D, Street R, Courtney A, Hoyle S et al (2007) The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Mol Ecol 16:127–138Patkeau D (1999) Using genetics to identify intraspecific conservation units: a critique of current methods. Conserv Biol 13:1507–1509Primmer CR, Møller AP, Ellegren H (1995) Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow Hirundo rustica. Mol Ecol 4:493–498Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Raymond M, Rousset F (1995) GENEPOP (version 12): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkSpielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264von Oosterhout C, Hutchinson WF, Wills PM et al (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538Waples RS (1991) Pacific salmon, Onchorynchus spp, and the definition of species under the endangered species act. Mar Fish Rev 53:11–22Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–212
    • …
    corecore