19 research outputs found

    A risk assessment-driven quantitative comparison of gene expression profiles in PBMCs and white adipose tissue of humans and rats after isoflavone supplementation

    Get PDF
    Quantitative insight into species differences in risk assessment is expected to reduce uncertainty and variability related to extrapolation from animals to humans. This paper explores quantification and comparison of gene expression data between tissues and species from intervention studies with isoflavones. Gene expression data from peripheral blood mononuclear cells (PBMCs) and white adipose tissue (WAT) after 8wk isoflavone interventions in postmenopausal women and ovariectomized F344 rats were used. A multivariate model was applied to quantify gene expression effects, which showed 3–5-fold larger effect sizes in rats compared to humans. For estrogen responsive genes, a 5-fold greater effect size was found in rats than in humans. For these genes, intertissue correlations (r = 0.23 in humans, r = 0.22 in rats) and interspecies correlation in WAT (r = 0.31) were statistically significant. Effect sizes, intertissue and interspecies correlations for some groups of genes within energy metabolism, inflammation and cell cycle processes were significant, but weak. Quantification of gene expression data reveals differences between rats and women in effect magnitude after isoflavone supplementation. For risk assessment, quantification of gene expression data and subsequent calculation of intertissue and interspecies correlations within biological pathways will further strengthen knowledge on comparability between tissues and species

    Comparative bio-accessibility, bioavailability and bioequivalence of quercetin, apigenin, glucoraphanin and carotenoids from freeze-dried vegetables incorporated into a baked snack versus minimally processed vegetables:Evidence from in vitro models and a human bioavailability study

    Get PDF
    The aim was to incorporate vegetables containing the phytochemicals quercetin, apigenin, glucoraphanin and carotenoids into a processed potato-based snack and assess their bioaccessibility and bioavailability. Three different processing routes were tested for incorporation and retention of phytochemicals in snacks using individually quick frozen or freeze-dried vegetables. No significant differences in the uptake or transport of quercetin or apigenin between a vegetable mix or snacks were observed using the CaCo-2 transwell model. Simulated in vitro digestions predicted a substantial release of quercetin and apigenin, some release of glucoraphanin but none for carotenes from either the snack or equivalent steamed vegetables. In humans, there were no significant differences in the bioavailability of quercetin, apigenin or glucoraphanin from the snack or equivalent steamed vegetables. We have shown that significant quantities of freeze-dried vegetables can be incorporated into snacks with good retention of phytochemicals and with similar bioavailability to equivalent steamed vegetables

    Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: results from a double blind, randomized controlled trial in metabolic syndrome participants

    Get PDF
    Background & aims: Whilst the cardioprotective effects of blueberry intake have been shown in prospective studies and short-term randomized controlled trials (RCTs), it is unknown whether anthocyanin-rich blueberries can attenuate the postprandial, cardiometabolic dysfunction which follows energy-dense food intakes; especially in at-risk populations. We therefore examined whether adding blueberries to a high-fat/high-sugar meal affected the postprandial cardiometabolic response over 24 h. Methods: A parallel, double-blind RCT (n = 45; age 63.4 ± 7.4 years; 64% male; BMI 31.4 ± 3.1 kg/m 2) was conducted in participants with metabolic syndrome. After baseline assessments, an energy-dense drink (969 Kcals, 64.5 g fat, 84.5 g carbohydrate, 17.9 g protein) was consumed with either 26 g (freeze-dried) blueberries (equivalent to 1 cup/150 g fresh blueberries) or 26 g isocaloric matched placebo. Repeat blood samples (30, 60, 90, 120, 180, 360 min and 24 h), a 24 h urine collection and vascular measures (at 3, 6, and 24 h) were performed. Insulin and glucose, lipoprotein levels, endothelial function (flow mediated dilatation (FMD)), aortic and systemic arterial stiffness (pulse wave velocity (PWV), Augmentation Index (AIx) respectively), blood pressure (BP), and anthocyanin metabolism (serum and 24 h urine) were assessed. Results: Blueberries favorably affected postprandial (0–24 h) concentrations of glucose (p < 0.001), insulin (p < 0.01), total cholesterol (p = 0.04), HDL-C, large HDL particles (L-HDL-P) (both p < 0.01), extra-large HDL particles (XL-HDL-P; p = 0.04) and Apo-A1 (p = 0.01), but not LDL-C, TG, or Apo-B. After a transient higher peak glucose concentration at 1 h after blueberry intake ([8.2 mmol/L, 95%CI: 7.7, 8.8] vs placebo [6.9 mmol/L, 95%CI: 6.4, 7.4]; p = 0.001), blueberries significantly attenuated 3 h glucose ([4.3 mmol/L, 95%CI: 3.8, 4.8] vs placebo [5.1 mmol/L, 95%CI: 4.6, 5.6]; p = 0.03) and insulin concentrations (blueberry: [23.4 pmol/L, 95%CI: 15.4, 31.3] vs placebo [52.9 pmol/L, 95%CI: 41.0, 64.8]; p = 0.0001). Blueberries also improved HDL-C ([1.12 mmol/L, 95%CI: 1.06, 1.19] vs placebo [1.08 mmol/L, 95%CI: 1.02, 1.14]; p = 0.04) at 90 min and XL-HDLP levels ([0.38 × 10-6, 95%CI: 0.35, 0.42] vs placebo [0.35 × 10-6, 95%CI: 0.32, 0.39]; p = 0.02) at 3 h. Likewise, significant improvements were observed 6 h after blueberries for HDL-C ([1.17 mmol/L, 95%CI: 1.11, 1.24] vs placebo [1.10 mmol/L, 95%CI: 1.03, 1.16]; p < 0.001), Apo-A1 ([1.37 mmol/L, 95%CI: 1.32, 1.41] vs placebo [1.31 mmol/L, 95%CI: 1.27, 1.35]; p = 0.003), L-HDLP ([0.70 × 10-6, 95%CI: 0.60, 0.81] vs placebo [0.59 × 10-6, 95%CI: 0.50, 0.68]; p = 0.003) and XL-HDLP ([0.44 × 10-6, 95%CI: 0.40, 0.48] vs placebo [0.40 × 10-6, 95%CI: 0.36, 0.44]; p < 0.001). Similarly, total cholesterol levels were significantly lower 24 h after blueberries ([4.9 mmol/L, 95%CI: 4.6, 5.1] vs placebo [5.0 mmol/L, 95%CI: 4.8, 5.3]; p = 0.04). Conversely, no effects were observed for FMD, PWV, AIx and BP. As anticipated, total anthocyanin-derived phenolic acid metabolite concentrations significantly increased in the 24 h after blueberry intake; especially hippuric acid (6-7-fold serum increase, 10-fold urinary increase). In exploratory analysis, a range of serum/urine metabolites were associated with favorable changes in total cholesterol, HDL-C, XL-HDLP and Apo-A1 (R = 0.43 to 0.50). Conclusions: For the first time, in an at-risk population, we show that single-exposure to the equivalent of 1 cup blueberries (provided as freeze-dried powder) attenuates the deleterious postprandial effects of consuming an energy-dense high-fat/high-sugar meal over 24 h; reducing insulinaemia and glucose levels, lowering cholesterol, and improving HDL-C, fractions of HDL-P and Apo-A1. Consequently, intake of anthocyanin-rich blueberries may reduce the acute cardiometabolic burden of energy-dense meals. Clinical trial registry: NCT02035592 at www.clinicaltrials.gov

    Single-Step Extraction Coupled with Targeted HILIC-MS/MS Approach for Comprehensive Analysis of Human Plasma Lipidome and Polar Metabolome

    No full text
    International audienceExpanding metabolome coverage to include complex lipids and polar metabolites is essential in the generation of well-founded hypotheses in biological assays. Traditionally, lipid extraction is performed by liquid-liquid extraction using either methyl-tert-butyl ether (MTBE) or chloroform, and polar metabolite extraction using methanol. Here, we evaluated the performance of single-step sample preparation methods for simultaneous extraction of the complex lipidome and polar metabolome from human plasma. The method performance was evaluated using high-coverage Hydrophilic Interaction Liquid Chromatography-ESI coupled to tandem mass spectrometry (HILIC-ESI-MS/MS) methodology targeting a panel of 1159 lipids and 374 polar metabolites. The criteria used for method evaluation comprised protein precipitation efficiency, and relative MS signal abundance and repeatability of detectable lipid and polar metabolites in human plasma. Among the tested methods, the isopropanol (IPA) and 1-butanol:methanol (BUME) mixtures were selected as the best compromises for the simultaneous extraction of complex lipids and polar metabolites, allowing for the detection of 584 lipid species and 116 polar metabolites. The extraction with IPA showed the greatest reproducibility with the highest number of lipid species detected with the coefficient of variation (CV) < 30%. Besides this difference, both IPA and BUME allowed for the high-throughput extraction and reproducible measurement of a large panel of complex lipids and polar metabolites, thus warranting their application in large-scale human population studies

    Pharmacokinetics and pharmacodynamics of inhaled nicotine salt and free-base using an e-cigarette: A randomized crossover study.

    Get PDF
    BACKGROUND Popular "pod-style" e-cigarettes commonly use nicotine salt-based e-liquids that cause less irritation when inhaled and can deliver higher nicotine concentrations than free-base nicotine. We aimed to investigate the pharmacokinetic and pharmacodynamic effects of different nicotine formulations (salt vs. free-base) and concentrations that might influence systemic nicotine absorption and appeal of e-cigarettes. METHODS In this randomized, double-blind, within-subject crossover study, 20 non nicotine-naïve participants were switched among three e-liquids (free-base nicotine 20mg/mL, nicotine salt 20mg/mL, nicotine salt 40mg/mL) using a refillable pod system and a standardized vaping protocol (one puff every 30 seconds, 10 puffs total). Serum nicotine concentrations and vital signs were assessed over 180 minutes; direct effects, craving, satisfaction, withdrawal, and respiratory symptoms were measured using questionnaires. CYP2A6 genotypes and the nicotine metabolite ratio were also assessed. RESULTS Eleven (55%) participants were male and the median age was 23.5 years (range 18-67). All three formulations differed significantly in peak serum nicotine concentration (baseline adjusted Cmax, median (range): 12.0ng/mL (1.6-27.3), 5.4ng/mL (1.9-18.7) and 3.0ng/mL (1.3-8.8) for nicotine salt 40mg/mL, nicotine salt 20mg/mL and free-base 20mg/mL, respectively). All groups reached Cmax 2.0-2.5min (median) after their last puff. Differences in subjective effects were not statistically significant. No serious adverse events were observed. CONCLUSION Free-base 20mg/mL formulations achieved lower blood nicotine concentrations than nicotine salt 20mg/mL, while 40mg/mL nicotine salt yielded concentrations similar to cigarette smoking. The findings can inform regulatory policy regarding e-liquids and their potential use in smoking cessation. IMPLICATIONS Nicotine salt formulations inhaled by an e-cigarette led to higher nicotine delivery compared to nicotine free-base formulations with the same nicotine concentration. These findings should be considered in future regulatory discussions. The 40mg/mL nicotine salt formulation showed similar nicotine delivery as combustible cigarettes, albeit at concentrations over the maximum limit for e-liquids allowed in the European Union. Nicotine delivery resembling combustible cigarettes might be beneficial for smokers willing to quit to adequately alleviate withdrawal symptoms. However, increased nicotine delivery can also pose a public health risk, raising concerns about abuse liability, especially among youth and non-smokers

    Soy supplementation : Impact on gene expression in different tissues of ovariectomized rats and evaluation of the rat model to predict (post)menopausal health effect

    No full text
    This toxicogenomic study was conducted to predict (post)menopausal human health effects of commercial soy supplementation using ovariectomized rats as a model. Different target tissues (i.e. breast, uterus and sternum) and non-target tissues (i.e. peripheral blood mononuclear cells (PBMC), adipose and liver) of ovariectomized F344 rats exposed to a commercially available soy supplement for eight weeks, were investigated. Changes in gene expression in these tissues were analysed using whole-genome microarray analysis. No correlation in changes in gene expression were observed among different tissues, indicating tissue specific effects of soy isoflavone supplementation. Out of 87 well-established estrogen responsive genes (ERGs), only 19 were found to be significantly regulated (p < 0.05) in different tissues, particularly in liver, adipose and uterus tissues. Surprisingly, no ERGs were significantly regulated in estrogen sensitive breast and sternum tissues. The changes in gene expression in PBMC and adipose tissue in rats were compared with those in (post)menopausal female volunteers who received the same supplement in a similar oral dose and exposure duration in human intervention studies. No correlation in changes in gene expression between rats and humans was observed. Although receiving a similar dose, in humans the plasma levels expressed as total free aglycones were several folds higher than in the rat. Therefore, the overall results in young ovariectomized female F344 rats indicated that using rat transcriptomic data does not provide a suitable model for human risk or benefit analysis of soy isoflavone supplementation.</p

    A global HILIC-MS approach to measure polar human cerebrospinal fluid metabolome: Exploring gender-associated variation in a cohort of elderly cognitively healthy subjects.

    No full text
    Cerebrospinal fluid (CSF) is a key body fluid that maintains the homeostasis in central nervous system (CNS). As a biofluid whose content reflects the brain metabolic activity, the CSF has been profiled in the context of neurological diseases to provide novel insights into the disease mechanisms. However, a global high-throughput approach to measure a broad diversity of polar metabolites present in CSF is lacking. Although still perceived as challenging and less reproducible, hydrophilic interaction liquid chromatography (HILIC) has recently evolved to offer the unprecedented coverage capacity of water-soluble metabolome. Here, we present a global HILIC high-resolution mass spectrometry-based (HRMS) approach that combines the profiling in acidic pH ESI (+) and basic pH ESI (-) mode to extend the coverage of CSF polar metabolome. This approach allowed us to annotate and measure a broad range of central carbon metabolites (implicated in glycolysis, TCA cycle, nucleotide, amino acid and fatty acid metabolism) in CSF collected from cognitively healthy elderly volunteers (n = 32), using a single extraction method. Metabolite annotation was achieved using the accurate mass, RT and MS/MS criteria, allowing for the characterization of 146 measurable metabolites. Exploration of characterized individual CSF profiles allowed for a discovery of intriguing gender-associated differences, with significantly higher acylcarnitine levels in men and higher taurine levels women. With this case study, we demonstrate the value of combined HILIC ESI ± HRMS profiling to assess CSF metabolome in clinical research studies

    Soy supplementation: Impact on gene expression in different tissues of ovariectomized rats and evaluation of the rat model to predict (post)menopausal health effect

    Get PDF
    This toxicogenomic study was conducted to predict (post)menopausal human health effects of commercial soy supplementation using ovariectomized rats as a model. Different target tissues (i.e. breast, uterus and sternum) and non-target tissues (i.e. peripheral blood mononuclear cells (PBMC), adipose and liver) of ovariectomized F344 rats exposed to a commercially available soy supplement for eight weeks, were investigated. Changes in gene expression in these tissues were analysed using whole-genome microarray analysis. No correlation in changes in gene expression were observed among different tissues, indicating tissue specific effects of soy isoflavone supplementation. Out of 87 well-established estrogen responsive genes (ERGs), only 19 were found to be significantly regulated (p < 0.05) in different tissues, particularly in liver, adipose and uterus tissues. Surprisingly, no ERGs were significantly regulated in estrogen sensitive breast and sternum tissues. The changes in gene expression in PBMC and adipose tissue in rats were compared with those in (post)menopausal female volunteers who received the same supplement in a similar oral dose and exposure duration in human intervention studies. No correlation in changes in gene expression between rats and humans was observed. Although receiving a similar dose, in humans the plasma levels expressed as total free aglycones were several folds higher than in the rat. Therefore, the overall results in young ovariectomized female F344 rats indicated that using rat transcriptomic data does not provide a suitable model for human risk or benefit analysis of soy isoflavone supplementation. Keywords: Gene expression, Ovariectomized rat model, (Post)menopausal health effect, Soy isoflavone supplementatio

    Chronic and postprandial effect of blueberries on cognitive function, alertness and mood in participants with metabolic syndrome– results from a 6-month, double blind, randomized controlled trial

    No full text
    Background: Anthocyanin and blueberry intakes positively associated with cognitive function in population-based studies and cognitive benefits in randomized controlled trials of adults with self-perceived or clinical cognitive dysfunction. To date, adults with metabolic syndrome (MetS) but without cognitive dysfunction are understudied. Objectives: Cognitive function, mood, alertness, and sleep quality were assessed as secondary end points in MetS participants, postprandially (>24 h) and following 6-mo blueberry intake. Methods: A double-blind, randomized controlled trial was conducted, assessing the primary effect of consuming freeze-dried blueberry powder, compared against an isocaloric placebo, on cardiometabolic health >6 mo and a 24 h postprandial period (at baseline). In this secondary analysis of the main study, data from those completing mood, alertness, cognition, and sleep assessments are presented (i.e., n = 115 in the 6 mo study, n = 33 in the postprandial study), using the following: 1) Bond-Lader self-rated scores, 2) electronic cognitive battery (i.e., testing attention, working memory, episodic memory, speed of memory retrieval, executive function, and picture recognition), and 3) the Leeds Sleep Evaluation Questionnaire. Urinary and serum anthocyanin metabolites were quantified, and apolipoprotein E genotype status was determined. Results: Postprandial self-rated calmness significantly improved after 1 cup of blueberries (P = 0.01; q = 0.04; with an 11.6% improvement compared with baseline between 0 and 24 h for the 1 cup group), but all other mood, sleep, and cognitive function parameters were unaffected after postprandial and 6-mo blueberries. Across the ½ and 1 cup groups, microbial metabolites of anthocyanins and chlorogenic acid (i.e., hydroxycinnamic acids, benzoic acids, phenylalanine derivatives, and hippuric acids) and catechin were associated with favorable chronic and postprandial memory, attention, executive function, and calmness. Conclusions: Although self-rated calmness improved postprandially, and significant cognition-metabolite associations were identified, our data did not support strong cognitive, mood, alertness, or sleep quality improvements in MetS participants after blueberry intervention. This trial was registered at clinicaltrials.gov as NCT02035592

    Chronic and postprandial effect of blueberries on cognitive function, alertness, and mood in participants with metabolic syndrome – results from a six-month, double-blind, randomized controlled trial

    No full text
    Background. Anthocyanin and blueberry intakes positively associate with cognitive function in population-based studies, and cognitive benefits in randomized controlled trials (RCTs) of adults with self-perceived or clinical cognitive dysfunction. To date, adults with metabolic syndrome (MetS), but without cognitive dysfunction, are understudied. Objective. Cognitive function, mood, alertness, and sleep quality were assessed as secondary endpoints in MetS participants, postprandially (over 24h) and following 6-mo blueberry intake. Method. A double-blind RCT was conducted, assessing the primary effect of consuming freeze-dried blueberry powder, compared against an iso-caloric placebo, on cardiometabolic health over 6 mo. and a 24h postprandial period (at baseline). In this secondary analysis of the main study, data from those completing mood, alertness, cognition, and sleep assessments are presented (i.e. n=115 in the 6 mo. study, n=33 in the postprandial study), using i) Bond Lader self-rated scores, ii) electronic cognitive battery (i.e. testing attention, working memory, episodic memory, speed of memory retrieval, executive function, picture recognition), and iii) the Leeds Sleep Evaluation Questionnaire. Urinary and serum anthocyanin metabolites were quantified, and apolipoprotein E genotype status determined. Results. Postprandial self-rated calmness significantly improved after 1 cup blueberries (p=0.01; q=0.04; with an 11.6% improvement compared to baseline between 0 and 24h for the 1 cup group), but all other mood, sleep and cognitive function parameters were unaffected after postprandial and 6-mo blueberries. Across the ½ and 1 cup groups, microbial metabolites of anthocyanins and chlorogenic acid (i.e. hydroxycinnamic acids, benzoic acids, phenylalanine derivatives, hippuric acids) and catechin were associated with favorable chronic and postprandial memory, attention, executive function and calmness. Conclusions. Whilst self-rated calmness improved postprandially, and significant cognition-metabolite associations were identified, our data did not support strong cognitive, mood, alertness or sleep quality improvements in MetS participants after blueberry intervention
    corecore