22 research outputs found

    Antiplatelet and antibacterial activities of Essential Oils obtained from rhizomes and leaves of <i>Hedychium coronarium</i> J. Koening

    Get PDF
    Hedychium coronarium J. Koening, belonging to Zingiberaceae family, is a perennial herb with fleshly aromatic rhizomes. There are no information about the antiplatelet properties of essential oils (EOs) from rhizomes (HCR) and leaves (HCL) of this herb, additionally, there are reports about the antibacterial activity of the Zingiberaceae species, however, no studies have been carried out in the Colombian Amazon Region. The EOs were characterized by GC-MS, the antiaggregant activity was assessed by ADP and Collagen as platelet agonist and the antibacterial activity against E. faecalis and S. aureus were evidenced by the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A high content of oxygenated monoterpenes were found in HCL essential oil (EO) and 20 compounds were identified in HCR EO. The HCL EO showed antiaggregant activity when collagen was used and HCR EO showed a concentration-dependent activity against ADP and collagen, meanwhile only the HCR EO showed antibacterial activity against E. faecalis and S. aureus.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    A new spectroscopic and interferometric study of the young stellar object V645 Cyg

    Get PDF
    We present the results of high-resolution optical spectroscopy, low-resolution near-IR spectroscopy and near-infrared speckle interferometry of the massive young stellar object candidate V645 Cyg, acquired to refine its fundamental parameters and the properties of its circumstellar envelope. Speckle interferometry in the HH- and KK-bands and an optical spectrum in the range 5200--6680 \AA with a spectral resolving power of RR = 60 000 were obtained at the 6-m telescope of the Russian Academy of Sciences. Another optical spectrum in the range 4300--10500 \AA with RR = 79 000 was obtained at the 3.6-m CFHT. Low-resolution spectra in the ranges 0.46--1.4 μ\mum and 1.4--2.5 μ\mum with RR \sim 800 and \sim 700, respectively, were obtained at the 3-m Shane telescope of the Lick Observatory. Using a novel kinematical method based on the non-linear modeling of the neutral hydrogen density profile in the direction toward the object, we propose a distance of D=4.2±D = 4.2\pm0.2 kpc. We also suggest a revised estimate of the star's effective temperature, Teff_{\rm eff} \sim25 000 K. We resolved the object in both HH- and KK-bands. We conclude that V645 Cyg is a young, massive, main-sequence star, which recently emerged from its cocoon and has already experienced its protostellar accretion stage. The presence of accretion is not necessary to account for the high observed luminosity of (2--6)×104\times 10^4 M_{\odot} yr1^{-1}. The receding part of a strong, mostly uniform outflow with a terminal velocity of \sim800 km s1^{-1} is only blocked from view far from the star, where forbidden lines form.Comment: 14 pages, 10 figure

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning.

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership

    No full text
    Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors

    Chemical Constituents from Licania cruegeriana and Their Cardiovascular and Antiplatelet Effects

    No full text
    Three new lupane-type triterpenoids: 6β,30-dihydroxybetulinic acid glucopyranosyl ester (4), 6β,30-dihydroxybetulinic acid (5) and 6β-hydroxybetulinic acid (6), were isolated from Licania cruegeriana Urb. along with six known compounds. Their structures were elucidated on the basis of spectroscopic methods, including IR, ESIMS, 1D- and 2D-NMR experiments, as well as by comparison of their spectral data with those of related compounds. All compounds were evaluated in vivo for their effects on the mean arterial blood pressure (MABP) and heart rate (HR) of spontaneously hypertensive rats (SHR) and also in vitro for their capacity to inhibit the human platelet aggregation. None of the isolated flavonoids 1–3 showed cardiovascular effects on SHR and among the isolated triterpenoids 4–9 only 5 and 6 produced a significant reduction in MABP (60.1% and 17.2%, respectively) and an elevation in HR (11.0% and 41.2%, respectively). Compounds 3, 4, 5 and 6 were able to inhibit human platelet aggregation induced by ADP, collagen and arachidonic acid with different selectivity profiles

    Platelets, a Key Cell in Inflammation and Atherosclerosis Progression

    No full text
    Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis

    Endothelial transmigration of platelets depends on soluble factors released by activated endothelial cells and monocytes

    No full text
    Cardiovascular diseases (CVDs) remain leading causes of death worldwide. While platelet-mediated thrombus formation following the rupture of an atherosclerotic plaque is one of the key pathophysiologic events in CVDs, the role of platelets in previous or more advanced stages of atherosclerosis is less known. Interestingly, the presence of platelets has been observed at the core of the atherosclerotic plaque. In order to study the conditions necessary for platelets to migrate toward an atherosclerotic lesion, we designed an in vitro co-culture model. Platelets were co-cultured with monocytes in Transwell inserts covered with a confluent endothelium and the number of migrating platelets and/or monocytes was determined under different conditions. Platelets were also exposed to media conditioned obtained from co-cultures prior to migration assays. Here we show that coculturing platelets and monocytes increased platelet transmigration, with a considerable number of transmigrated platelets found not associated to monocytes. Interestingly, conditioned media from platelet-monocyte co-cultures also increased platelet transmigration and aggregation, suggesting the existence of soluble factors secreted by monocytes that enhance the migratory and pro-aggregating capabilities of platelets. We conclude that platelets have the machinery to migrate through an activated endothelium, a response that requires the interaction with secreted factors produce in the context of the interaction with monocytes under atherogenic conditions
    corecore