3,955 research outputs found

    Etna International Training School of Geochemistry. Science meets Practice

    Get PDF
    Also this year, the “Etna International Training School of Geochemistry. Science meets practice” took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory “Pizzi Deneri”, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D’Alessandro et al., 1997; Caltabiano et al., 2004; Aiuppa et al., 2008; Carn et al., 2017]. Furthermore, Gauthier and Le Cloarec, [1998] underscored that Mt. Etna is an important source of volcanic particles, having a mass flux of particle passively released from the volcano during non-eruptive period estimated between 7 to 23 tons/day [Martin et al., 2008; Calabrese et al., 2011]. In general, Etna is considered to be still under evolution and rather ‘friendly’, which, along with the above, makes it a favorable natural laboratory to study volcanic geochemistry. The Observatory Pizzi Deneri was sponsored by Haroun Tazieff, and it was built in 1978 by the CNR - International Institute of Volcanology under the direction of Prof. Letterio Villari. It is located at the base of the North-East crater (2,850 m a.s.l.), near the Valle del Leone and it was built on the rim of the Ellittico caldera. A picturesque building, consisting of two characteristics domes in front of the breath-taking panorama of the summit craters. Even though it is quite spartan as an accommodation facility, the dormitories, kitchen, seminar room and laboratory are well equipped. In other words, the Pizzi Deneri observatory is a unique place close to the top of the most active volcano of Europe. The observatory lies in a strategic location making it one of the most important sites for monitoring, research and dissemination of the scientific culture. After six field multidisciplinary campaigns (2010-2015) organized by a group of researchers of several institutions (INGV of Palermo, Catania, Naples, Bologna; Universities of Palermo, Florence, Mainz, Heidelberg), the idea of sharing and passing on the experience to the new generation of students has materialized, and the “Etna International Training School of Geochemistry. Science meets practice” was born in 2016. The four editions of the school were partially funded by INGV of Palermo and Catania, European Geoscience Union (EGU), Società Geochimica Italiana (SoGeI) and Associazione Naturalistica Geode. The conceptual idea of the school is to share scientific knowledge and experiences in the geochemical community, using local resources with a low-cost organization in order to allow as many students as possible access to the school. The “Etna International Training School of Geochemistry. Science meets practice” is addressed to senior graduate students, postdoctoral researchers, fellows, and newly appointed assistant professors, aiming to bring together the next generation of researchers active in studies concerning the geochemistry and the budget of volcanic gases. Introduce the participants with innovative direct sampling and remote sensing techniques. Furthermore, it gives young scientists an opportunity to experiment and evaluate new protocols and techniques to be used on volcanic fluid emissions covering a broad variety of methods. The teaching approach includes theoretical sessions (lectures), practical demonstrations and field applications, conducted by international recognized geochemists. We thank all the teachers who helped to make the school possible, among these: Tobias Fischer (University of New Mexico Albuquerque), Jens Fiebig (Institut für Geowissenschaften Goethe-Universität Frankfurt am Main), Andri Stefansson (University of Iceland, Institute of Earth Sciences), Mike Burton (University of Manchester), Nicole Bobrowski (Universität Heidelberg Institute of Environmental Physics and Max Planck Institute for Chemistry), Alessandro Aiuppa (Università di Palermo), Franco Tassi (Università di Firenze), Walter D’Alessandro (INGV of Palermo), Fatima Viveiros (University of the Azores). Direct sampling of high-to-low temperature fumaroles, plume measurement techniques (using CO2/SO2 sensors such as Multi-GAS instruments, MAX-DOAS instruments and UV SO2 cameras, alkaline traps and particle filters), measurement of diffuse soil gas fluxes of endogenous gases (CO2, Hg0, CH4 and light hydrocarbons), sampling of mud volcanoes, groundwaters and bubbling gases. Sampling sites include the active summit craters, eruptive fractures and peripheral areas. The students have shown an active participation both to the lessons and the fieldworks. Most of them describe the school as formative and useful experience for their future researches. Their enthusiasm is the real engine of this school

    Etna International Training School of Geochemistry. Science meets Practice

    Get PDF
    Also this year, the \u201cEtna International Training School of Geochemistry. Science meets practice\u201d took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory \u201cPizzi Deneri\u201d, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D\u2019Alessandro et al., 1997; Caltabiano et al., 2004; Aiuppa et al., 2008; Carn et al., 2017]. Furthermore, Gauthier and Le Cloarec, [1998] underscored that Mt. Etna is an important source of volcanic particles, having a mass flux of particle passively released from the volcano during non-eruptive period estimated between 7 to 23 tons/day [Martin et al., 2008; Calabrese et al., 2011]. In general, Etna is considered to be still under evolution and rather \u2018friendly\u2019, which, along with the above, makes it a favorable natural laboratory to study volcanic geochemistry. The Observatory Pizzi Deneri was sponsored by Haroun Tazieff, and it was built in 1978 by the CNR - International Institute of Volcanology under the direction of Prof. Letterio Villari. It is located at the base of the North-East crater (2,850 m a.s.l.), near the Valle del Leone and it was built on the rim of the Ellittico caldera. A picturesque building, consisting of two characteristics domes in front of the breath-taking panorama of the summit craters. Even though it is quite spartan as an accommodation facility, the dormitories, kitchen, seminar room and laboratory are well equipped. In other words, the Pizzi Deneri observatory is a unique place close to the top of the most active volcano of Europe. The observatory lies in a strategic location making it one of the most important sites for monitoring, research and dissemination of the scientific culture. After six field multidisciplinary campaigns (2010-2015) organized by a group of researchers of several institutions (INGV of Palermo, Catania, Naples, Bologna; Universities of Palermo, Florence, Mainz, Heidelberg), the idea of sharing and passing on the experience to the new generation of students has materialized, and the \u201cEtna International Training School of Geochemistry. Science meets practice\u201d was born in 2016. The four editions of the school were partially funded by INGV of Palermo and Catania, European Geoscience Union (EGU), Societ\ue0 Geochimica Italiana (SoGeI) and Associazione Naturalistica Geode. The conceptual idea of the school is to share scientific knowledge and experiences in the geochemical community, using local resources with a low-cost organization in order to allow as many students as possible access to the school. The \u201cEtna International Training School of Geochemistry. Science meets practice\u201d is addressed to senior graduate students, postdoctoral researchers, fellows, and newly appointed assistant professors, aiming to bring together the next generation of researchers active in studies concerning the geochemistry and the budget of volcanic gases. Introduce the participants with innovative direct sampling and remote sensing techniques. Furthermore, it gives young scientists an opportunity to experiment and evaluate new protocols and techniques to be used on volcanic fluid emissions covering a broad variety of methods. The teaching approach includes theoretical sessions (lectures), practical demonstrations and field applications, conducted by international recognized geochemists. We thank all the teachers who helped to make the school possible, among these: Tobias Fischer (University of New Mexico Albuquerque), Jens Fiebig (Institut f\ufcr Geowissenschaften Goethe-Universit\ue4t Frankfurt am Main), Andri Stefansson (University of Iceland, Institute of Earth Sciences), Mike Burton (University of Manchester), Nicole Bobrowski (Universit\ue4t Heidelberg Institute of Environmental Physics and Max Planck Institute for Chemistry), Alessandro Aiuppa (Universit\ue0 di Palermo), Franco Tassi (Universit\ue0 di Firenze), Walter D\u2019Alessandro (INGV of Palermo), Fatima Viveiros (University of the Azores). Direct sampling of high-to-low temperature fumaroles, plume measurement techniques (using CO2/SO2 sensors such as Multi-GAS instruments, MAX-DOAS instruments and UV SO2 cameras, alkaline traps and particle filters), measurement of diffuse soil gas fluxes of endogenous gases (CO2, Hg0, CH4 and light hydrocarbons), sampling of mud volcanoes, groundwaters and bubbling gases. Sampling sites include the active summit craters, eruptive fractures and peripheral areas. The students have shown an active participation both to the lessons and the fieldworks. Most of them describe the school as formative and useful experience for their future researches. Their enthusiasm is the real engine of this school

    Application of CO 2 carbon stable isotope analysis to ant trophic ecology

    Get PDF
    Stable isotope analysis of animal tissues is commonly used to infer diet and trophic position. However, it requires destructive sampling. The analysis of carbon isotopes from exhaled CO2 is non-invasive and can provide useful ecological information because isotopic CO2 signatures can reflect the diet and metabolism of an animal. However, this methodology has rarely been used on invertebrates and never on social insects. Here, we first tested whether this method reflects differences in δ13C-CO2 between workers of the Mediterranean ant Crematogaster scutellaris (Olivier) (Hymenoptera: Formicidae, Crematogastrini) fed with sugar from beet (C3; Beta vulgaris L., Amaranthaceae) or cane (C4; Saccharum officinarum L., Poaceae). We found that a significant difference can be obtained after 24 h. Consequently, we used this technique on wild co-occurring ant species with different feeding preferences to assess their reliance on C3 or C4 sources. For this purpose, we sampled workers of C. scutellaris, the invasive garden ant Lasius neglectus (van Loon et al.) (Lasiini), and the harvester ant Messor capitatus (Latreille) (Stenammini). No significant differences in their carbon isotopic signatures were recorded, suggesting that in our study site no niche partitioning occurs based on the carbon pathway, with all species sharing similar resources. However, further analysis revealed that M. capitatus, a seed-eating ant, can be regarded as a C3 specialist, whereas L. neglectus and C. scutellaris are generalists that rely on both C3 and C4 pathways, though with a preference for the former. Our results show that this methodology can be applied even to small animals such as ants and can provide useful information on the diets of generalist omnivores.info:eu-repo/semantics/publishedVersio

    Dissolved organic matter in continental hydro-geothermal systems: insights from two hot springs of the East African Rift valley

    Get PDF
    Little is known about the quantity and quality of dissolved organic matter (DOM) in waters from continental geothermal systems, with only a few reports available from the Yellowstone US National Park. In this study, we explored the chemodiversity of DOM in water samples collected from two geothermal hot springs from the Kenyan East African Rift Valley, a region extremely rich in fumaroles, geysers, and spouting springs, located in close proximity to volcanic lakes. The DOM characterization included in-depth assessments performed by negative electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Reduced, saturated and little aromatic DOM compounds were dominant in the hot spring waters collected from either the Ol Njorowa gorge (ON) or the south shore of the soda-saline Lake Elementaita (ELM). Oxygen-poor and sulfur-bearing DOM molecules prevailed in ON, probably reflecting abiotic sulfurization from sulfide-rich geofluids. Nitrogen-bearing aliphatic and protein-like molecules were abundant in ELM, possibly perfusing through the organic-rich sediments of the adjacent Lake Elementaita. Notably, the heat-altered DOM of ancient autochthonous derivation could represent an overlooked source of aliphatic organic carbon for connected lentic environments, with a potential direct impact on nutrient cycling in lakes that receive geothermal water inputs

    Structural control on carbon dioxide diffuse degassing at the Caviahue – Copahue Volcanic Complex, Argentina

    Get PDF
    The Caviahue – Copahue Volcanic Complex (CCVC) is located within the Andean Cordillera, in the Neuquén province, Argentina. This tectono-magmatic system lies within the northern termination of the Liquiñe – Ofqui fault zone, a 1,200-km-long intraarc strike-slip fault system. Fluid emissions at this active volcanic complex are fed by a hydrothermal reservoir located at 800 m depth, mostly recharged by meteoric water. The reservoir is heated by a magmatic chamber located at 5 km depth, which also provides the system with magmatic gases. Fluid emissions at the CCVC release over 200 tons per day of soil diffuse CO2. The aim of this study is to evaluate the control that the local structural architecture exerts on CO2 flow, from the hydrothermal reservoir to the surface.Fil: Lamberti, María Clara Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Vigide, Nicolás Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Venturi, Stefanía. Consiglio Nazionale delle Ricerche; ItaliaFil: Agusto, Mariano Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Yagupsky, Daniel Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Winocur, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Barcelona, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Velez, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Tassi, Franco. Università degli Studi di Firenze; ItaliaEGU General Assembly 2019VienaAustriaEuropean Geosciences Unio

    Validation tests of the CMS TIB/TID structures

    Get PDF
    Tracker Inner Barrel half-cylinders and Tracker Inner Disks of the CMS tracker have been integrated in three INFN sites. Integrated structures are submitted to an extensive set of tests whose main aim is to validate the functioning of the structures in CMS-like conditions. The tests have furthermore proven to be a great opportunity to study several aspects of the performance in detail. In this note the tests are described in some detail and an overview of the results is presented

    Current and emerging treatments for the management of osteogenesis imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) is the most common bone genetic disorder and it ischaracterized by bone brittleness and various degrees of growth disorder. Clinical severityvaries widely; nowadays eight types are distinguished and two new forms have been recentlydescribed although not yet classified. The approach to such a variable and heterogeneousdisease should be global and therefore multidisciplinary. For simplicity, the objectives oftreatment can be reduced to three typical situations: the lethal perinatal form (type II), inwhich the problem is survival at birth; the severe and moderate forms (types III–IX), in whichthe objective is ‘autonomy’; and the mild form (type I), in which the aim is to reach ‘normallife’. Three types of treatment are available: non-surgical management (physical therapy,rehabilitation, bracing and splinting), surgical management (intramedullary rod positioning,spinal and basilar impression surgery) and medical-pharmacological management (drugs toincrease the strength of bone and decrease the number of fractures as bisphosphonates or growthhormone, depending on the type of OI). Suggestions and guidelines for a therapeutic approachare indicated and updated with the most recent findings in OI diagnosis and treatment

    The acidic waters in Italy: a brief overview

    Get PDF
    The present study is aimed at providing a brief overview of the Italian acidic waters based on literature and unpublished data. Acidic waters in Italy, as elsewhere, are relatively common and associated with extremely variable geological settings. Owing to their peculiar features, these waters may seriously affect the environment and the ecosystems. Along the Apennine belt, the western and inner sectors of the Italian peninsula record an anomalous geothermal gradient, mostly overlapping with the Neogene-to-present magmatism, that explains the presence of a huge amount of CO2(H2S)-rich gas and thermal water discharges, geothermal fields (e.g. Larderello and Mt. Amiata) and ore deposits (e.g. Fe- and polymetallic sulfides, e.g. Elba Island and Colline Metallifere). Acidic waters (pH ≤5) from volcanic and geothermal areas show outlet temperatures and Total Dissolved Solids (TDS) from 10 to 96°C and <1 to ≈30 g/L, respectively, with a chemical composition usually belonging to the Ca-SO4, NH4-SO4 or Na-Cl facies. Frequently, they are related to bubbling and boiling pools due to the interaction between deepsourced gases and shallow aquifers or meteoric waters. Concentrations of heavy metals and metalloids are in most cases high. Extremely high contents of metals are also recorded for those acidic waters that characterize the main Italian mining districts, mostly located in Sardinia (not included in the present study), Tuscany and NW Alps, where they are related to Acid Mine Drainage l.s. or Acid Rock Drainage. The pH values are as low as 2.08, with variable TDS concentrations. Compositionally, they are Na-SO4, Ca(Mg)-SO4, and/or Mg(Ca)-SO4 waters, prevalently due to oxidative processes affecting polymetallic sulfides
    corecore