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 24 

Abstract 25 

Stable isotope analysis of animal tissues is commonly used to infer diet and trophic position. 26 

However, it requires destructive sampling. The analysis of carbon isotopes from exhaled CO2 is 27 

non-invasive and can provide useful ecological information because isotopic CO2 signatures can 28 

reflect the diet and metabolism of an animal. However, this methodology has rarely been used on 29 

invertebrates and never on social insects. Here, we first tested whether this method reflects 30 

differences in δ13C-CO2 between workers of the Mediterranean ant Crematogaster scutellaris 31 

(Olivier, 1792) (Formicidae: Crematogastrini) fed with beet (C3) and cane (C4) sugar (Beta 32 

vulgaris L., Amaranthaceae and Saccharum officinarum L., Poaceae, respectively). We found that a 33 

significant difference can be obtained after 24 hours. Consequently, we used this technique on wild 34 

co-occurring ant species with different feeding preferences to assess their reliance on C3 or C4 35 

sources. For this purpose, workers of C. scutellaris, the invasive garden ant Lasius neglectus (Van 36 

Loon, Boomsma & Andrasfalvy, 1990) (Formicidae: Lasiini) and the harvester ant Messor capitatus 37 

(Latreille, 1798) (Formicidae: Stenammini) were sampled. No significant differences in their carbon 38 

isotopic signatures were recorded, suggesting that in our study site no niche partitioning based on 39 

the carbon pathway occurs, with all species sharing similar resources. However, further analysis 40 

revealed that M. capitatus, a seed-eating ant, can be regarded as a C3 specialist, whereas L. 41 

neglectus and C. scutellaris are generalists that rely on both C3 and C4 pathways, though with a 42 

preference for the former. Our results show that this methodology can be successfully applied even 43 

to small animals like ants and can provide useful information on the diets of generalist omnivores.44 
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 45 

Introduction 46 

Stable isotopes analysis (SIA) of animal tissues is widely used in animal ecology to infer diet, 47 

determine trophic positions and define trophic niches (Fry, 2006; Boecklen et al., 2011). The most 48 

widely used isotopes are those of C and N (δ13C and δ15N), which provide information on the main 49 

carbon source used by a consumer and its trophic level based on predictable isotope fractionation 50 

occurring from one trophic level to another (Post, 2002). Moreover, SIA is employed for the study 51 

of invasive species impacts (Balzani et al., 2016; Stellati et al., 2019) and interactions (Haubrock et 52 

al., 2019a, 2020) and to predict the effects of species reintroductions (Haubrock et al., 2019b). 53 

Applications in studies of insects include the determination of resource origin (Ouyang et al., 2015), 54 

movements (Madeira et al., 2013, 2014; Zhang et al., 2020) and feeding periods (Ouyang et al., 55 

2014), as well as the study of nutrient uptake (Pollier et al., 2016) and allocation (Levin et al., 56 

2017a,b). In ant ecology, SIA is used to study the trophic role of each species (e.g. Ottonetti et al., 57 

2008), to infer how ant assemblages vary in different habitat conditions (Gibb & Cunningham, 58 

2011), to estimate the importance of trophobiosis (Brewitt et al., 2015) and to study the effects of 59 

natural local baseline variations (Cronin et al., 2015) and colony parameters (Barriga et al., 2013) 60 

on isotopic signatures. This approach requires destructive sampling and is therefore difficult to use 61 

when dealing with rare species or when repeated measurements on the same subjects are desired 62 

(Hatch et al., 2002b). However, social insects are somewhat unique in that colonies can be 63 

considered the ecological unit of study and these can be repeatedly sampled overtime with relative 64 

ease, to assess the effect of changes in resource availability on their diet (Roeder & Kaspari, 2017; 65 

Shik et al., 2018). 66 

Stable isotope analysis can also be performed on gas — a common technique in 67 

geochemistry in which C stable isotopes of CO2 and CH4 are employed to identify emission sources 68 

in natural or anthropised environments (e.g. Venturi et al., 2017, 2019, 2020 and references 69 
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therein). In the biological sciences, isotopic gas measurements on respiration-derived CO2 are 70 

relatively common. This approach is primarily used in medical studies in which changes in the 71 

isotopic composition of CO2 (breath tests) are used to investigate human pathologies, physiology 72 

and nutrition, and to test the metabolic rate during stress exercises (McCue & Welch, 2016). 73 

Similarly, this approach can be applied to the animal sciences. The carbon isotope signature (δ13C) 74 

of exhaled CO2 correlates with diet and metabolism as it reflects the signature of the catabolised 75 

substrate (Perkins & Speakman, 2001). Moreover, the δ13C values in the breath indicate both the 76 

present and past diet and are used to calculate the proportion of lipids and carbohydrates 77 

metabolised by an animal (Hatch et al., 2002a,b). Comparing the δ13C values of breath and body 78 

tissues allows for the detection of diet changes (Podlesak et al., 2005; Voigt et al., 2008a). Shifts in 79 

substrate oxidation during starvation or torpor/hibernation have been studied using breath stable 80 

isotopes in vertebrates (McCue & Pollock, 2013; Lee et al., 2017; Rosner & Voigt, 2018) and 81 

invertebrates (McCue et al., 2015). The reasoning behind these studies is that breath is highly 82 

metabolically active compared to tissues, which show slower turnover rates, thus reflecting the 83 

more recent diet (Perkins & Speakman, 2001). If breath and tissue signatures differ, a dietary shift 84 

is likely to have occurred over a certain temporal window (Podlesak et al., 2005; Voigt et al., 85 

2008a). On the other hand, lipid δ13C values are depleted with respect to carbohydrate δ13C (Post et 86 

al., 2007), and this difference is recorded in breath isotope signatures (Voigt et al., 2008b,c). 87 

Therefore, animals metabolising their fat stores (due to starvation or torpor) will have lower breath 88 

δ13C than non-fasted animals (McCue & Welch, 2016). The advantages of this methodology are that 89 

it (i) uses a non-invasive and non-destructive sampling technique, (ii) can be performed repeatedly 90 

on the same individual, and (iii) can be applied to studies of endangered or protected animals 91 

(Hatch et al., 2002b). However, most studies have focused their attention on birds and mammals, 92 

while investigations on invertebrates are less common (but see e.g. DeNiro & Epstein, 1978; Miller 93 

et al., 1985; Engel et al., 2009). To the best of our knowledge, no breath study has addressed the 94 

trophic ecology of ants. 95 
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Most ant species are believed to have an omnivorous and opportunist diet (Hölldobler & 96 

Wilson, 1990; Blüthgen & Feldhaar, 2010). Still, different food preferences can be found in 97 

different taxa. For example, Formicinae generally tend to feed on lower trophic levels (mainly 98 

homopteran honeydew or plant extrafloral nectaries) compared to Myrmicinae, which are more 99 

carnivorous, although generalisations are problematic (Fiedler et al., 2007; Blüthgen & Feldhaar, 100 

2010; Brewitt et al., 2015). Food selection is determined by several other factors such as resource 101 

distribution and availability, food quality and quantity, handling time and colony nutritional 102 

requirements (Csata & Dussutour, 2019). Additionally, resource value can vary in different periods 103 

of the year, changing their profitability and, consequently, their uptake by ants (Kay, 2002). The 104 

application of SIA techniques can, therefore, provide cost-effective information on ant metabolism 105 

and can help to elucidate details of their trophic ecology. 106 

The acrobat ant Crematogaster scutellaris (Olivier, 1792) is a Mediterranean Myrmicinae 107 

ant that nests in tree trunks (Santini et al., 2011). While it is commonly observed tending 108 

homopterans to obtain their carbohydrate honeydew, it is also known to be an avid predator of 109 

arthropods (Schatz et al., 2003; Frizzi et al., 2016). Indeed, SIA has revealed its high trophic level, 110 

suggesting a strong reliance on animal prey (Ottonetti et al., 2008). The invasive garden ant Lasius 111 

neglectus (Van Loon, Boomsma & Andrasfalvy, 1990) is a Formicinae ant considered invasive in 112 

Europe (e.g. Nagy et al., 2009). This species tends to monopolise aphid aggregations and to rely 113 

primarily on honeydew (Paris & Espadaler, 2009; Frizzi et al., 2018). While seed collection (with 114 

elaiosome consumption) is common, few genera, such as the Myrmicinae Messor and Pheidole, 115 

actually eat them (Blüthgen & Feldhaar, 2010). However, the harvester ant Messor capitatus 116 

(Latreille, 1798) often feeds on plant seeds (Cerdá & Retana, 1994), while Pheidole pallidula 117 

retrieves mostly insects and thus is more predaceous (Detrain, 1990). 118 

In this study, carbon isotopes of CO2 emitted from different ant species collected in the field 119 

were analysed to assess their diet and their degree of trophic specialisation on C3 or C4 sources. 120 
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First, the application of this method on ants was tested by comparing the δ13C values in the CO2 121 

produced by laboratory colonies of C. scutellaris fed with different food sources. In particular, the 122 

colonies were fed with either raw beet sugar (C3 plant) or raw cane sugar (C4 plant), which are 123 

known to have distinct isotopic signatures (O’Leary, 1981; Boecklen et al., 2011). Then, the 124 

isotopic signatures of the gas produced by wild colonies of three ant species (C. scutellaris, L. 125 

neglectus and M. capitatus), which have different feeding preferences, were analysed. We 126 

hypothesised that if these species feed on distinct carbon pathways, a difference in CO2 isotope 127 

signature should be detected.128 
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 129 

Materials and Methods 130 

In July 2019, we collected workers of the ant C. scutellaris from 10 natural colonies on the 131 

University Science Campus in Sesto Fiorentino or in the surrounding area (43°49’00’’N, 132 

11°11’59’’E). The area is a managed suburban park made up by University buildings surrounded by 133 

overgrown fields, public gardens with ornamental trees (Acer campestre, Celtis australis, Quercus 134 

robur, Quercus cerris, Quercus ilex, Fraxinus angustifolia) and some sparse trees of Populus sp., 135 

Morus sp. and Ailanthus altissima. Samples from each colony were brought to the laboratory and 136 

subdivided into two groups of approximately 200 workers each. The ants were housed in plastic 137 

aquaria (10 x 20 x 30 cm) with Fluon®-coated walls to prevent escape. One group was fed with raw 138 

beet sugar (C3) and the other group was supplied with raw cane sugar (C4). Sugar and water were 139 

provided ad libitum for two weeks to let the ants equilibrate to their new diet. 140 

After two weeks, 100 workers from each group were placed into closed 3-litre respiratory 141 

jars, which have a 3-way valve sealed on the cap. The jar walls were coated with Fluon® in the 142 

upper portion to prevent ants from reaching the valve. Four jars with no ants were used as controls. 143 

The jars were kept in a thermostatic chamber with controlled conditions to reproduce the daily (24 144 

hours) light-dark cycle (16 h / 8 h). During the daytime, the temperature was set to a constant 27°C, 145 

and during the night it was 19°C. The air in the jars was sampled at the beginning of the experiment 146 

(t0) and after 24 hours (t24). At each time, aliquots of air (50 ml) were collected (after mixing the air 147 

in each jar) using a 60 ml plastic syringe connected to the valve and were stored in 1-litre Supelco 148 

Tedlar® gas sampling bags equipped with a push/pull lock valve. 149 

In the second set of experiments in July–August 2019, we collected specimens of three co-150 

occurring species, C. scutellaris, M. capitatus and L. neglectus, in the same area to assess the 151 

differences in their diets. For each species, we selected four natural colonies and collected 70–200 152 
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workers (depending on the species’ individual size to obtain enough biomass) from each. Workers 153 

were immediately placed into sealed respiratory jars and air was collected according to the 154 

procedure described above. No food was provided during or before the experiment. At the end of 155 

the experiment, the ants were euthanised by freezing at -20°C and dried in an oven at 60°C for 48 h 156 

before being weighed using an electronic balance (accuracy: 0. 01 mg). 157 

Carbon isotopic composition of CO2 (expressed as δ13C-CO2, ‰ vs. V-PDB standards) was 158 

analysed by Cavity Ring-Down Spectroscopy (CRDS) using a Picarro G2201-i Analyzer (CO2 159 

operational range: 100–4000 ppm). The Supelco Tedlar® gas sampling bags were directly 160 

connected to the analyser inlet via silicon connections. Statistical analyses were performed using R 161 

software version 3.6. CO2 production rates were estimated by multiplying the mean difference in 162 

gas concentration within the 24 h by the jar volume (3 l) and dividing by 24 to obtain a rate per 163 

hour. The mean individual CO2 production rate was calculated by dividing by the number of 164 

workers in the jar. Both estimations were corrected for the mean dry weight of the workers. 165 

Linear mixed effects models and simple linear models were built for the first and second 166 

experiments, respectively. Separated models were constructed for t0 and t24 using log-transformed 167 

CO2 concentration and isotopic signature as the response variables and sugar type or species as 168 

predictors. The CO2 in the respiration jars was a mixture of the gas produced by ants during the 169 

experiment and that of the air already present in the jar. To estimate the signature of the CO2 170 

produced by ants, Keeling plots (Keeling, 1958, 1961; Carleton et al., 2004) were used separately 171 

for each colony. Keeling plots are biplots of time-repeated measurements (at t0 and t24) with the 172 

δ13C values on the y-axis and 1/[CO2] on the x-axis. In the biplot, the y-intercept of the regression 173 

line between t0 and t24 represents the case in which the CO2 concentration is infinitely high and the 174 

ambient CO2 is negligible. With the log-transformed data, an additional linear model with sugar or 175 

species (in lab or field, respectively) as the predictor was built. 176 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/isotopic-composition
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/cavity
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectroscopy
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According to the two-endpoint mixing model by Engel et al. (2009), the δ13C values in the 177 

breath of an ant is: 178 

δ13Cbreath = p(δ13CA) + (1-p) (δ13CB)         (eq.1) 179 

where p is the proportion of C3 or C4 sources in the diet and the endpoints (A and B) are the 180 

isotopic signatures of ants fed exclusively with either C3 or C4 sugars, respectively. The latter were 181 

obtained by averaging the pure isotopic signatures estimated by the intercepts in the Keeling plots. 182 

This formula was used to produce the values expected for each species using different proportions 183 

of C3 or C4 sources. This formula was also used to calculate the δ13C pure signatures for the three 184 

species of ants used in the second experiment. The average ant pure signatures were then compared 185 

to the threshold values obtained from eq. 1 using t-tests to identify species specialists for either C3 186 

or C4 plants. We defined specialists as those consuming more than 90% of either C3 or C4 sources 187 

in their diet (p > 0.9 in eq. 1).188 
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 189 

Results 190 

For the lab experiments, the mixed effects models showed no difference in CO2 concentrations at t0 191 

(F2,9.76 = 3.04, P = 0.09) as well as no difference in the δ13C-CO2 values (F2,12.71 = 0.36, P = 0.71). 192 

At t24, a significant difference was found for CO2 concentrations (F2,20 = 35.32, P < 0.001), with 193 

significant differences between controls and each treatment (P < 0.001 for both) but no differences 194 

between cane and beet treatments (P = 0.97). Overall, the δ13C-CO2 values differed among groups 195 

(F2, 13.27 = 181.21, P < 0.001; Figure 1). No differences between controls and cane treatment were 196 

found (P = 0.84), while the δ13C-CO2 values measured in beet treatments significantly differed with 197 

respect to controls and cane treatment (P < 0.001). The average pure δ13C-CO2 signatures of C3 and 198 

C4 sugar were estimated to be -24.56‰ and -11.41‰, respectively. The linear model of the Keeling 199 

plot intercepts revealed significant differences between the two treatments (F1,17 = 485.74, P < 200 

0.001). 201 

The linear model for the wild ants showed no difference in CO2 concentrations at t0 (F3,11 = 202 

0.95, P = 0.45) as well as no difference in δ13C-CO2 (F3,11 = 1.84, P = 0.20). At t24, a significant 203 

difference was found for CO2 concentrations (F3,11 = 24.90, P < 0.001), with all ant species 204 

differing from the controls (P < 0.001). The mean CO2 production rate per g of dry weight was 205 

1282.50 μl h-1 g-1 for C. scutellaris (mean individual rate: 12.83 μl h-1 g-1), 2888.75 μl h-1 g-1 for L. 206 

neglectus (mean individual rate: 28.89 μl h-1 g-1) and 598.29 μl h-1 g-1 for M. capitatus (mean 207 

individual rate: 8.55 μl h-1 g-1). Significant differences in δ13C-CO2 were found at t24 (F3,11 = 38.10, 208 

P < 0.001; Figure 2). All species differed from controls (P < 0.001 for all), although no difference 209 

among species was found. Similar results were obtained from the linear model of the Keeling plot 210 

intercepts among species (F2,9 = 3.41, P = 0.08). 211 
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Using the isotope mixing model, we identified the threshold values for C3 or C4 specialists, 212 

which were δ13C-CO2 > -12.73‰ (C4) and δ13C-CO2 < -23.25‰ (C3). Intermediate values 213 

indicated generalist feeders. We found no C4 specialists (Figure 3), and all species had much more 214 

negative δ13C-CO2 values. Both C. scutellaris and L. neglectus had δ13C-CO2 values not different 215 

from the expected threshold value for C3 specialists (t-test P > 0.7 for both), with some colonies 216 

beyond that threshold. On the other hand, M. capitatus significantly differed from this threshold (t3 217 

= -5.5331, P = 0.012) and all colonies were beyond that value (Figure 3), suggesting an exclusive 218 

reliance on C3 sources.219 
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 220 

Discussion 221 

To the best of our knowledge, this is the first application of a breath test on social insects and one of 222 

few on insects overall (Miller et al., 1985; Engel et al., 2009). One of the main achievements of this 223 

study was that the methodology used for analysing the carbon isotopic composition of breathed CO2 224 

can easily be applied to small organisms like ants. Indeed, the isotopic signatures of Crematogaster 225 

ants fed with either C3 or C4 sugars were recorded to be significantly different after 24 h in the 226 

respiration chambers, demonstrating that the experimental setup was efficiently able to allow 227 

discrimination of distinct dietary carbon sources. The technique also provided insights into the 228 

feeding choices of the three species of ants collected in the field. 229 

For the lab experiments, 24 hours proved to be a sufficient time for the ants to accumulate 230 

significant amounts of CO2 in the respiration chambers relative to the control jars. After 24 hours, a 231 

significant difference in the isotopic signatures of ants fed with the two sugars was found and their 232 

δ13C-CO2 values were in line with those expected based on the known isotopic content of the two 233 

sources. C3 plants produce sugars with a mean isotopic signature of -28‰, while C4 plants 234 

synthesise sugars with a mean δ13C-CO2 of -13‰ (Ehleringer & Cerling, 2002; Fry, 2006). 235 

Significant differences between the two groups at t24 were also found when comparing the pure 236 

signatures estimated by the Keeling plots, with these estimates close to the reference values 237 

commonly reported in the literature for C3 and C4 (e.g. Fry, 2006). Unfortunately, the isotopic 238 

signature of the air in the control chambers, which reflected the composition of the air in the lab, 239 

was close to that of C4 sugar, and this is likely the reason why the two groups did not show 240 

significant differences. To prevent this issue, we recommend that future experiments are carried out 241 

by using pure chromatographic air to amplify the differences among treatments and controls as 242 

much as possible. 243 
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The results from ants collected in the field showed that the CO2 production rate was 244 

consistent with the data reported in the literature and negatively correlated with worker dimensions, 245 

as previously found by Mason et al. (2015). Moreover, in our study site, there was no evidence of 246 

niche partitioning based on the carbon pathway, with all sampled species sharing similar resources. 247 

This result is confirmed by the pure breath signature estimates. As pointed out by Perkins & 248 

Speakman (2001), finding a strong difference in carbon signatures in the field can be difficult, 249 

especially for generalist animals like ants. However, though field-collected ants did not show a clear 250 

reliance on different carbon sources (i.e. C3 vs. C4 pathways) as found in other wild animals 251 

(Voigt, 2009; Voigt et al., 2013), the two-endpoint mixing model revealed further information on 252 

ant feeding preferences. Indeed, we could not classify any of the studied species as a selective C4 253 

consumer (Engel et al., 2009), but the degree of reliance on C3 plants seems to vary across species. 254 

Both C. scutellaris and L. neglectus did not exceed the C3 threshold, suggesting that they use both 255 

C3 and C4 sources. Interestingly, however, some variability among colonies was present, as some 256 

of them seemed to be C3 specialists, while others evidently consumed some sources from the C4 257 

pathway. Indeed, both species were collected on C3 trees (Quercus sp.) on which they were feeding 258 

on aphid honeydew, but predation on other insects is common, especially for C. scutellaris (Frizzi 259 

et al., 2016). Conversely, Messor capitatus, a seed-eating ant, showed a complete reliance on C3 260 

plants for its diet. It is important to stress that in our study we did not characterised in detail the 261 

resources available to each colony, and therefore we cannot say how much the observed differences 262 

reflected an active choice or the local availability. 263 

Studying omnivorous bats, Voigt et al. (2008a) pointed out that δ13C of breath and tissues 264 

could present a discrepancy as a result of isotopic routing, i.e. the different destinations that 265 

macronutrients have in the consumer body. While breath signature is indicative of metabolism, 266 

tissue signature indicates the sources used for tissue synthesis. This implies that species from lower 267 

trophic levels (only one C source, from plants) will have similar δ13C values in the tissues and 268 

breath, while omnivorous species (two C sources, from plants and from animal prey) will have 269 
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higher (more positive) δ13C values in the tissues than in the breath, the latter underestimating the 270 

protein contribution to the diet. Therefore, breath signatures are more related to the carbohydrate 271 

portion of the diet. This could explain the similarity found between L. neglectus and C. scutellaris 272 

breath. Although C. scutellaris preys on other insects, its main carbohydrate source is the plant-273 

derived aphid honeydew, as well as for L. neglectus (Frizzi et al., 2016, 2018). One important point 274 

to carefully consider when dealing with the analysis of breathed CO2 is that the δ13C values reflects 275 

the catabolised substrate. If an animal is fasted and uses fat stores, its breath will reflect the carbon 276 

signature of the diet from which reserves were formed, which do not necessarily coincide with its 277 

more recent diet (Hatch et al., 2002a; Welch et al., 2006). Unfortunately, the nutritional status of the 278 

ants collected in the field was not known and, although there were no reasons for them to be fasting, 279 

it is possible that differences in their reliance on C3 resources are affected by different uses of fat 280 

stores (Hatch et al., 2002a; Welch et al., 2006). At the same time, it is important to stress that the 281 

small differences observed could also be due to different availabilities of C3/C4 sources around the 282 

nests of the sampled colonies. 283 

The applicability of the method to this taxonomic group was facilitated by its social 284 

behaviour, which allows the handling of groups of individuals instead of single ants, providing 285 

information on the colony as an ecological unit (Lach et al., 2010). Indeed, given that a sufficient 286 

amount of breathed CO2 must accumulate in the respirometric chamber and that a non-negligible 287 

volume of air must be sampled for the analysis, this approach can more easily process pools of 288 

individuals from the same colony rather than the breath of single small animals. In conclusion, we 289 

demonstrated that despite the important limitation of providing only one variable, breathing tests 290 

could provide useful information on the trophic behaviour of omnivorous generalists like ants. This 291 

study represents a starting point for further investigations of insect breath—particularly in 292 

herbivores, but also in other ants in tropical ecosystems, where C4 plants are more abundant, to 293 

better understand their trophic ecology. 294 

295 
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Figure legends 468 

Figure 1. CO2 concentrations (A) and carbon isotopic signatures (B) for controls and treatments 469 

(beet and sugar cane) after 24 hours. In each plot, the groups having different letters were 470 

significantly different after Tukey post hoc test. 471 

Figure 2. CO2 concentrations (A) and carbon isotopic signatures (B) for controls and ant species 472 

(Crematogaster scutellaris, Lasius neglectus and Messor capitatus) after 24 hours. In each plot, the 473 

groups having different letters were significantly different after Tukey post hoc test. 474 

Figure 3. Estimated pure breath signatures of ant species (Crematogaster scutellaris, Lasius 475 

neglectus and Messor capitatus). The horizontal red lines show the threshold values for C3 476 

(continuous) and C4 (dashed) specialists. 477 


