9,433 research outputs found

    Adiabatic regularization of the graviton stress-energy tensor in de Sitter space-time

    Full text link
    We study the renormalized energy-momentum tensor of gravitons in a de Sitter space-time. After canonically quantizing only the physical degrees of freedom, we adopt the standard adiabatic subtraction used for massless minimally coupled scalar fields as a regularization procedure and find that the energy density of gravitons in the E(3) invariant vacuum is proportional to H^4, where H is the Hubble parameter, but with a positive sign. According to this result the scalar expansion rate, which is gauge invariant in de Sitter space-time, is increased by the fluctuations. This implies that gravitons may then add to conformally coupled matter in driving the Starobinsky model of inflation.Comment: 5 pages, revtex, final version accepted for publication in PR

    Ultracold collisions of metastable helium atoms

    Get PDF
    We report scattering lengths for the singlet Sigma g +, triplet Sigma u + and quintet Sigma g + adiabatic molecular potentials relevant to collisions of two metastable (n=2 triplet S) helium atoms as a function of the uncertainty in these potentials. These scattering lengths are used to calculate experimentally observable scattering lengths, elastic cross sections and inelastic rates for any combination of states of the colliding atoms, at temperatures where the Wigner threshold approximation is valid.Comment: 20 pages, 8 figures, RevTeX, epsf. Small additions of tex

    Stochastic growth of quantum fluctuations during slow-roll inflation

    Full text link
    We compute the growth of the mean square of quantum fluctuations of test fields with small effective mass during a slowly changing, nearly de Sitter stage which took place in different inflationary models. We consider a minimally coupled scalar with a small mass, a modulus with an effective mass ∝H2 \propto H^2 (with HH as the Hubble parameter) and a massless non-minimally coupled scalar in the test field approximation and compare the growth of their relative mean square with the one of gauge-invariant inflaton fluctuations. We find that in most of the single field inflationary models the mean square gauge invariant inflaton fluctuation grows {\em faster} than any test field with a non-negative effective mass. Hybrid inflationary models can be an exception: the mean square of a test field can dominate over the gauge invariant inflaton fluctuation one on suitably choosing parameters. We also compute the stochastic growth of quantum fluctuation of a second field, relaxing the assumption of its zero homogeneous value, in a generic inflationary model; as a main result, we obtain that the equation of motion of a gauge invariant variable associated, order by order, with a generic quantum scalar fluctuation during inflation can be obtained only if we use the number of e-folds as the time variable in the corresponding Langevin and Fokker-Planck equations for the stochastic approach. We employ this approach to derive some bounds in the case of a model with two massive fields.Comment: 9 pages, 4 figures. Added references, minor changes, matches the version to be published in Phys. Rev.

    Creation of a molecular condensate by dynamically melting a Mott-insulator

    Full text link
    We propose creation of a molecular Bose-Einstein condensate (BEC) by loading an atomic BEC into an optical lattice and driving it into a Mott insulator (MI) with exactly two atoms per site. Molecules in a MI state are then created under well defined conditions by photoassociation with essentially unit efficiency. Finally, the MI is melted and a superfluid state of the molecules is created. We study the dynamics of this process and photoassociation of tightly trapped atoms.Comment: minor revisions, 5 pages, 3 figures, REVTEX4, accepted by PRL for publicatio

    High sensitivity low frequency radio observations of cD galaxies

    Get PDF
    We present the GMRT 235 MHz images of three radio galaxies and 610 MHz images of two sources belonging to a complete sample of cD galaxies in rich and poor galaxy clusters. The analysis of the spectral properties confirms the presence of aged radio emission in two of the presented sources.Comment: 3 pages, 2 figures, To appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    Radio halos in merging clusters of galaxies

    Full text link
    We present the preliminary results of 235 MHz, 327 MHz and 610 MHz observations of the galaxy cluster A3562 in the core of the Shapley Concentration. The purpose of these observations, carried out with the Giant Metrewave Radio Telescope (GMRT, Pune, India) was to study the radio halo located at the centre of A3562 and determine the shape of its radio spectrum at low frequencies, in order to understand the origin of this source. In the framework of the re--acceleration model, the preliminary analysis of the halo spectrum suggests that we are observing a young source (few 10810^8 yrs) at the beginning of the re--acceleration phase.Comment: 3 pages, 2 figures. Proceedings of IAU Colloquium 195 - Outskirts of Galaxy Clusters: intense life in the suburb

    IGR J17488-2338: a newly discovered giant radio galaxy

    Full text link
    We present the discovery of a large scale radio structure associated with IGR J17488--2338, a source recently discovered by \emph{INTEGRAL} and optically identified as a broad line AGN at redshift 0.24. At low frequencies, the source properties are those of an intermediate-power FR II radio galaxy with a linear size of 1.4\,Mpc. This new active galaxy is therefore a member of a class of objects called Giant Radio Galaxies (GRGs), a rare type of radio galaxies with physical sizes larger than 0.7\,Mpc; they represent the largest and most energetic single entities in the Universe and are useful laboratories for many astrophysical studies. Their large scale structures could be due either to special external conditions or to uncommon internal properties of the source central engine The AGN at the centre of IGR J17488--2338 has a black hole of 1.3×\times109^9 solar masses, a bolometric luminosity of 7×\times1046^{46}erg\,s−1^{-1} and an Eddington ratio of 0.3, suggesting that it is powerful enough to produce the large structure observed in radio. The source is remarkable also for other properties, among which its X-ray absorption, at odds with its type 1 classification, and the presence of a strong iron line which is a feature not often observed in radio galaxies.Comment: 4 pages, 3 figures, accepted for publication on Astronomy and Astrophysic

    Testing the radio halo-cluster merger scenario. The case of RXCJ2003.5-2323

    Full text link
    We present a combined radio, X-ray and optical study of the galaxy cluster RXCJ2003.5-2323. The cluster hosts one of the largest, most powerful and distant giant radio halos known to date, suggesting that it may be undergoing a strong merger process. The aim of our multiwavelength study is to investigate the radio-halo cluster merger scenario. We studied the radio properties of the giant radio halo in RXCJ2003.5-2323 by means of new radio data obtained at 1.4 GHz with the Very Large Array, and at 240 MHz with the Giant Metrewave Radio Telescope, in combination with previously published GMRT data at 610 MHz. The dynamical state of the cluster was investigated by means of X-ray Chandra observations and optical ESO--NTT observations. Our study confirms that RXCJ2003.5-2323 is an unrelaxed cluster. The unusual filamentary and clumpy morphology of the radio halo could be due to a combination of the filamentary structure of the magnetic field and turbulence in the inital stage of a cluster merger.Comment: 10 page, 10 figures, accepted for publication on A&
    • 

    corecore