11,353 research outputs found

    Nonrenormalization theorems for N=2 Super Yang-Mills

    Full text link
    The BRST algebraic proofs of the the nonrenormalization theorems for the beta functions of N=2 and N=4 Super Yang-Mills theories are reviewed.Comment: 3 pages, contribution to SUSY 2000 Encyclopedi

    Lithium Depletion Boundary in a Pre-Main Sequence Binary System

    Get PDF
    A lithium depletion boundary is detected in HIP 112312 (GJ 871.1 A and B), a \~12 Myr old pre-main sequence binary system. A strong (EW 300 mA) Li 6708 A absorption feature is seen at the secondary (~M4.5) while no Li 6708 A feature is detected from the primary (~M4). The physical companionship of the two stars is confirmed from common proper motions. Current theoretical pre-main sequence evolutionary models cannot simultaneously match the observed colors, brightnesses, and Li depletion patterns of this binary system. At the age upper limit of 20 Myr, contemporary theoretical evolutionary models predict too slow Li depletion. If true Li depletion is a faster process than predicted by theoretical models, ages of open clusters (Pleiades, alpha Persei, and IC 2391) estimated from the Li depletion boundary method are all overestimated. Because of the importance of the open cluster age scale, development of self-consistent theoretical models to match the HIP 112312 data is desirable.Comment: Accepted in ApJL. 5 pages total (3 tables, 3 figures

    Topological mass mechanism and exact fields mapping

    Full text link
    We present a class of mappings between models with topological mass mechanism and purely topological models in arbitrary dimensions. These mappings are established by directly mapping the fields of one model in terms of the fields of the other model in closed expressions. These expressions provide the mappings of their actions as well as the mappings of their propagators. For a general class of models in which the topological model becomes the BF model the mappings present arbitrary functions which otherwise are absent for Chern-Simons like actions. This work generalizes the results of [1] for arbitrary dimensions.Comment: 11 page

    Studying the evolution of AGB stars in the Gaia epoch

    Get PDF
    We present asymptotic giant branch (AGB) models of solar metallicity, to allow the interpretation of observations of Galactic AGB stars, whose distances should be soon available after the first release of the Gaia catalogue. We find an abrupt change in the AGB physical and chemical properties, occurring at the threshold mass to ignite hot bottom burning,i.e. 3.5M⊙3.5M_{\odot}. Stars with mass below 3.5M⊙3.5 M_{\odot} reach the C-star stage and eject into the interstellar medium gas enriched in carbon , nitrogen and 17O^{17}O. The higher mass counterparts evolve at large luminosities, between 3×104L⊙3\times 10^4 L_{\odot} and 105L⊙10^5 L_{\odot}. The mass expelled from the massive AGB stars shows the imprinting of proton-capture nucleosynthesis, with considerable production of nitrogen and sodium and destruction of 12C^{12}C and 18O^{18}O. The comparison with the most recent results from other research groups are discussed, to evaluate the robustness of the present findings. Finally, we compare the models with recent observations of galactic AGB stars, outlining the possibility offered by Gaia to shed new light on the evolution properties of this class of objects.Comment: 21 pages, 11 figure, 3 tables, accepted for publication in MNRAS (2016 July 11

    The early evolution of Globular Clusters: the case of NGC 2808

    Full text link
    Enhancement and spread of helium among globular cluster stars have been recently suggested as a way to explain the horizontal branch blue tails, in those clusters which show a primordial spread in the abundances of CNO and other elements involved in advanced CNO burning (D'Antona et al. 2002). In this paper we examine the implications of the hypothesis that, in many globular clusters, stars were born in two separate events: an initial burst (first generation), which gives origin to probably all high and intermediate mass stars and to a fraction of the cluster stars observed today, and a second, prolonged star formation phase (second generation) in which stars form directly from the ejecta of the intermediate mass stars of the first generation. In particular, we consider in detail the morphology of the horizontal branch in NGC 2808 and argue that it unveils the early cluster evolution, from the birth of the first star generation to the end of the second phase of star formation. This framework provides a feasible interpretation for the still unexplained dichotomy of NGC 2808 horizontal branch, attributing the lack of stars in the RR Lyr region to the gap in the helium content between the red clump, whose stars are considered to belong to the first stellar generation and have primordial helium, and the blue side of the horizontal branch, whose minimum helium content reflects the helium abundance in the smallest mass (~4Msun)contributing to the second stellar generation. This scenario provides constraints on the required Initial Mass Function, in a way that a great deal of remnant neutron stars and stellar mass black holes might have been produced.Comment: 23 pages, 7 figures, in press on The Astrophysical Journa

    The investigation of time dependent flame structure by ionization probes

    Get PDF
    Ionization probes were used to measure mean ionization current and frequency spectra, auto-correlations and cross-correlations in jet flames with variation in the initial Reynolds numbers and equivalence ratios. Special attention was paid to the transitional region between the burner exit plane and the plane of onset of turbulence

    Self-Enrichment in Globular Clusters: Is There a Role for the Super-Asymptotic Giant Branch Stars?

    Full text link
    In four globular clusters (GCs) a non negligible fraction of stars can be interpreted only as a very helium rich population. The evidence comes from the presence of a "blue" main sequence in ω\omega Cen and NGC 2808, and from the the very peculiar horizontal branch morphology in NGC 6441 and NGC 6388. Although a general consensus is emerging on the fact that self--enrichment is a common feature among GCs, the helium content required for these stars is Y\simgt0.35, and it is difficult to understand how it can be produced without any --or, for ω\omega Cen, without a considerable--associated metal enhancement. We examine the possible role of super--AGB stars, and show that they may provide the required high helium. However, the ejecta of the most massive super--AGBs show a global CNO enrichment by a factor of ≃\simeq4, due to the dredge--out process occurring at the second dredge up stage. If these clusters show no evidence for this CNO enrichment, we can rule out that at least the most massive super--AGBs evolve into O--Ne white dwarfs and take part in the formation of the second generation stars. This latter hypothesis may help to explain the high number of neutron stars present in GCs. The most massive super--AGBs would in fact evolve into electron--capture supernovae. Their envelopes would be easily ejected out of the cluster, but the remnant neutron stars remain into the clusters, thanks to their small supernova natal kicks.Comment: version accepted for publication in The Astrophysical Journal Letter

    Dust from AGBs: relevant factors and modelling uncertainties

    Get PDF
    The dust formation process in the winds of Asymptotic Giant Branch stars is discussed, based on full evolutionary models of stars with mass in the range 11M⊙≤_{\odot} \leqM≤8\leq 8M⊙_{\odot}, and metallicities 0.001<Z<0.0080.001 < Z <0.008. Dust grains are assumed to form in an isotropically expanding wind, by growth of pre--existing seed nuclei. Convection, for what concerns the treatment of convective borders and the efficiency of the schematization adopted, turns out to be the physical ingredient used to calculate the evolutionary sequences with the highest impact on the results obtained. Low--mass stars with M≤3\leq 3M⊙_{\odot} produce carbon type dust with also traces of silicon carbide. The mass of solid carbon formed, fairly independently of metallicity, ranges from a few 10−410^{-4}M⊙_{\odot}, for stars of initial mass 1−1.51-1.5M⊙_{\odot}, to ∼10−2\sim 10^{-2}M⊙_{\odot} for M∼2−2.5\sim 2-2.5M⊙_{\odot}; the size of dust particles is in the range 0.1μ0.1 \mum≤aC≤0.2μ\leq a_C \leq 0.2\mum. On the contrary, the production of silicon carbide (SiC) depends on metallicity. For 10−3≤Z≤8×10−310^{-3} \leq Z \leq 8\times 10^{-3} the size of SiC grains varies in the range 0.05μm<aSiC<0.1μ0.05 \mu {\rm m} < {\rm a_{SiC}} < 0.1 \mum, while the mass of SiC formed is 10−5M⊙<MSiC<10−3M⊙10^{-5}{\rm M}_{\odot} < {\rm M_{SiC}} < 10^{-3}{\rm M}_{\odot}. Models of higher mass experience Hot Bottom Burning, which prevents the formation of carbon stars, and favours the formation of silicates and corundum. In this case the results scale with metallicity, owing to the larger silicon and aluminium contained in higher--Z models. At Z=8×10−38\times 10^{-3} we find that the most massive stars produce dust masses md∼0.01m_d \sim 0.01M⊙_{\odot}, whereas models of smaller mass produce a dust mass ten times smaller. The main component of dust are silicates, although corundum is also formed, in not negligible quantities (∼10−20%\sim 10-20\%).Comment: Paper accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal (2014 January 4
    • …
    corecore