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THE INVESTIGATION OF TIME DEPENDENT FLAME STRUCTURE

BY IONISATION PROBES

by

J. M. P. Ventura, T. Suzuki, A. J. Yule, S. Ralph

and N. A. Chigier

Abstract

In this study,ionisation probes have been used to measure mean ionisation

current and frequency spectra, auto-correlations and cross-correlations in jet

flames with variation in the initial Reynolds numbers and equivalence ratios.

Special attention has been paid to the transitional region between the burner

exit plane and the plane of onset of turbulence.

Evidence of a double vortex structure was found, with low velocity

large vortices at the outer part of the, mixing layer and smaller,faster

moving vortices on the inner side. These vortices distort the reaction zone

and can thus be detected by the ionisation probes. Systematic variations of

mean ionisation level distributions and spectra were found with variation in

both Reynolds number and equivalence ratio. The transition to turbulence is

indicated by the axial variations of auto-correlations and frequency spectra.

A double probe cross-correlation technique showed the loss of coherence of the

initial vortices as they are convected downstream and it is also used to

measure the convection velocities of the reacting interfaces associated with

the vortices. The convective properties of the vortices are also found to be

dependent on the initial Reynolds number aid equivalence rat.Lo of the flame.

i
	 The large outer vortices, in the first 15 diameters of flow, are convected at

lower velocities than the equivalent eddies in the cold jet, but they

accelerate as they move downstream. The smaller, inner vortices move at

approximately the local mean velocity. baser anemometer measurements show

that the jet potential core increases in length by a factor of 5 compared with



_, 2 _

the cold jet core, for the flames studied. However spectra indicate a lengthening

of the transition region by a factor of 3. The usefulness of ionisation

probes for the determination of flame structure is demonstrated and the

combination of these high frequency response multiptobe techniques with

statistical data analysis methods, gives a unique capability for the determina-

tion of a detailed description of the time dependent transitional and turbulent

flame structure.

Introduction

Mixing layers with chemical reaction have been studied very intensively

in the last few years. One of the most import&nt examples is the round free

jet flame, in so far as it is the basic model for most of the burner systems

being used in industrial furnaces and combustion chambers. The presence of

coherent structures in jets (both in cold flow and flame situations) has

now been clearly established. However, these structures are very often

masked by a certain degree of randomness, so that their detection has to be

carried out using statistical techniques such as correlations and frequency

spectra measurements. The authors  have described an experimental investigation

of coherent structures in jet flames and have given a general description

of the vortex structures found in these flames. We describe, here,detailed

time resolved measurements in a jet flame obtained by using ionisation

probes, which have particular advantages of high frequency response and good

spatial resolution.

The existence of positive ions in hydrocarbon flames has long been

recognized, and mechanisms to explain their generation and recombination

were proposed  and arm now generally accepted. Because it decreases very

Sharply on both =ides of a reaction zone due to the fast ion recombination,

ion density can be used to detect the presence of flame. Karlovitz et al 

were the first to apply ionisation probes (essentially a wire, negatively

biased to attract positive ions) for that purpose. Since then, they have

been used by many workers; 4, 5, 6 a review ? of the theories supporting the
t	 ^^
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use of this probe has been published recently.

In the rresc-n. work the ionisation probes have been used to study the

transitional region in turbulent flames. The decay of coherence has been

studied; convection velocities and flow velocities'are compared. A picture

emerges according to which the flame characteristics are strongly influenced

by the interfaces between the mixing layer and the outer flow on one side,

and the potential core on the other side.

Experimental Apparatus

The experimental set up has been described in detail previously,8

so that only the principal characteristics will be presented here. It

consists mainly of a round burner (diameter 25.4 mm) in the centre of a

square nozzle (400 x 400 mm), which provides a secondary air stream with

a mean velocity of 0.8 ms-1 . The burner tube is fed with a mixture of

propane and air in various proportions. The secondary air stream provides

some shielding of the flame from small draughts; but it is mainly intended

as a means of seeding the outer side of the mixing layer for laser anemometry

measurements. Experiment his shown that biasing in velocity measurements

occurs when only one side of the mixing layer is seeded.

Turbulence levels in both the jet and surrounding exit streams are

less than 1%. The whole burner assembly can be moved vertically and hori-

zontally; furthermore, the probe holder is also movable, thus facilitating

the complete mapping of the flame field. The ionisation probes used were

similar to the ones reported by Suzuki et al. 6 Mean flow velocity was

measured with a conventional small angle side scatter laser doppler

anemometer, using a Spectra Physics 164 argon-ion laser at 800 mW, coupled

with a Cambridge Consultants frequency tracker.

Other instrumentation used included a Hewlett-Packard 3721A Correlator

to measure auto- and cross-correlations, and a Real Time Analyser Model SD 335,

to measure frequency spectra. 	 1



Results

Radial profiles of mean ion current and mean velocity an flames with

the same equivalej.ce ratio ¢ = 2.62 and Reynolds numbers Re = 5 x 10 3 , 104

and 1.5 x 104 are presented in Figure 1, for two different axial distances,

4

x/D = b and 16.

As far as the mean ion current profiles are concern ed, the peak value

increases with Reynolds number at both axial stations. A similar trend

with increasing Re has been described by Clements and Smy 9 for premixed flames.

At x/D = 16, th ,! profiles are wider and,in the case of the lowest Re flame,

the maximum is located at the flame axis. This gives an indication of the

width of the region where combustion takes place. The mean velocity profiles

show the persistence of the jet potential core up to and beyond x = 16D.

High velocity gradients are also found far downstream, at the inner side of

the mixing layer. The occurrence of inflexion points and 'humps' in the

velocity profiles is also seen.

Figure 2 shows typical traces of ion current signal obtained with two

ionisation probes, placed 10 mm apart, at x/D = 8 and 16. The existence

of a basically periodic signal in the upstream location contrasts strongly

with the much more random signal at the downstream point. ''he difference

between the smooth shape of the first signal and the 'spiky' appearance of

the second is also to be noted. At each position the signals from the two

probes are quite similar, although displaced in time. However, a more

detailed comparison between the signals, at one station, indicates significant

differences; for example the appearance or disappearance of peaks between the

pair of probes and differences in the time delays between corresponding peaks.

This indicates that one cannot make the simple assumption of a convected

'frozen' flow pattern even with such a relatively small probe separation of

10 mm.

Figure 3 presents normalized power spectra of ion current for two

flames with the same Reynolds number (Re = 10 4 ) but different equivalence

ratios (c = 2.62 and 10.4), obtained at axial distances x/D = 4, 12 and 16

A
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and at a radial distance r/D = 0.5. The main features of the spectra are similar

in both flames; the presence of pronounced peaks at x/D = 4 due to periodic

vortex structures, a general smoothing of the spectra with increased downstream

distance, and the final disappearance of any identifiable discrete frequency.

The peaks are also clearer in the flame with the lower equivalence ratio.

Spectra in flames with ^ = 2.62 and Re = 5 x 103, 1.0 x104 and 1.5 x 10 4 have

been measured at radial distance r/D = 0.5 and axial distance x/D = 4 (Fig. 4),

to study variation of spectra with Reynolds number. It may be noted that dis-

crete 'frequencies are very pronounced in all flames which is expected due to the

proximity to the burner exit. Also, a small shift of the discrete frequencies

with changing Re can be detected. The larger number of peaks noticeable in the

lower Reynolds number flame do not correspond to the actual presence of different

fluctuations, but rather are harmonics of the main frequency (the corresponding

time signal had a shape roughly similar to a square wave).

A change in the higher frequency rer,4on of the spectra is evident, namely

the appearance of sharp spikes with increasing Reynolds number; this is

attributed to the fact that, with increasing exit velocity, the mixing layer's

average radial location with respect to the jet flame centre line changes, so

that, while the measurements are taken in a fixed position relative to the

burner port, the locations are slightly different with respect to the mixing

layer. The effect of this is that the signal may be more or less influenced 	 }

F

by the higher frequency structure which is found at the inner interface of the

mixing layer as described Later and noted in cing films previously described

by the authors. I This influence will also be discussed in the light of cross-

correlation measurements.

A set of auto-correlation measurements, obtained with an ionisation

probe in a flame with 2.62 and Re = 104 , at distances downstream the

nozzle between 4 and 12 diameters are presented in Figure 5. The strong

periodicity in the signal is evident up to about 8 diameters downstream.
i

After that, turbulence becomes established and the auto-correlation is of
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the form generally found for a random signal.

This decay in the periodicity of the ionisation signals results from

a decay in the periodicity and coherence of the vortices which interact

with the reaction zone. The decay of the periodic auto-correlations is

evident in Figure 6, where the ratio between the second and the main peaks

in the auto-correlogram is plotted against normalized axial distance for

two flames with the same Reynolds .,Artbr3r (104 ) and different equivalence

ratio (2.62 and 10.4). It can ke y seen t;at the flame with the lower equivalence

ratio retains coherence of the vortex structures until further downstream.

Cress-correlations between the signals from two ionisation probes,

with separation of the sensing wires in the x direction, were obtained in

two different ways; (a) a set of measurements was carried out keeping a

fixed streamwise separation between probes (10 mm) and moving both probes

relative to the burner exit; (b) another set of data was obtained keeping

the upstream probe at a fixed position (x/D = 4) and moving the second probe

downstream.

From the cross-correlation curve, convection velocity was obtained

by dividing the inter-probe distance by the delay time between the origin

and the first positive peak. Applying this definition to the curves obtained

by the two methods presented above, two different physical interpretations

of convection velocity are derived: for a fixed inter-probe distance,

the value obtained is a local value, which is more uniquely related to the

measuring position, and less dependent on the energy content of the signal;

for the second method (variable distance between probes), especially for the

larger probe separation, convection velocity is more related to those structures

which are able to maintain their identity for longer distances.

Figure 7 presents cross-correlograms obtained by using a pair of ionisa-

tion probes with varying streamwise separation. Besides the overall shape

expected for this kind of measurement, there is a noticeable high frequency

'kink' at the beginning of the cross-correlograms (except for the smallest



it- 7 -

inter-probe distance where the time resolution of the measurement is probably

not enough for its detection). The physical interpretation of this small

inflection point is based upon evidence  provided by Schlieren high speed

c:'n4 films, which clearly show the mixing layer to be bounded by two different

interfaces: the inner one with a shorter wavelength instability and being

convected downstream relatively faster; the outer interfaces more widely

folded, with lower frequency and a lower convection velocity. The Schlieren

technique and ionisation probes respond to two different aspects of the

flame structure; the first technique is sensitive to density gradients

while the ionisation probes are sensitive to ion density, thus closely

detecting the presence of flame fronts. Therefore great care must be taken

to compare results derived from these two different techniques. It is

thought, nevertheless, that the small kink in the curves corresponds to

smaller vortices being convected at higher velocities.

In Figure 8 data obtained from several flames are presented, where

probe separation distance is plotted against delay time betweeen the origin

and the first positive main peak. The points are distributed in the graph

in two clearly distinct groups; one set obtained from the small high frequency

kinks present in cross-correlation curves for two different flames; and

another set derived from the main peak of the cross-correlograms. This

indicates that, for certain of the flames studied, the local mixing layer

flame structure is simultaneously influenced by two sets of vortex moti^ns

at both interfaces. However, for other flames the oscillations on t4he outer

interface (between the mixing layer and the secondary flow) are definitely the

dominant influence. It is found that the convection velocities of the inner

high frequency instability waves (or vortices), were approximately 0.85 UJ,

which agreed with the velocities of the inner vortices measured from cin6

films. 10 Although convection velocities obtained from the fixed and variable

interprobe distance methods have a somewhat different physical interpretation,

the actual values obtained do not fall very far apart, as can be seen from
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Figure 9, whEer;e data obtained from both methods are comparf d. ': As figure

shows variation in convection velocity of the main correlation peak, with

axial distance, along r/D _ 0.5. The straight l i ne is the least square fit

to the measurements obtained with a fixed distance between probes.

Figure 10 presents a comparison of radial profiles of flow velocity

obtained with laser anemometry and convection velocity derived from the

cross-correlations between No probes, spaced 10 mm apart in the strew mwise

direction. Both profiles were obtained at an axial distance of X/D = 10.

Discussion and Concluding Remarks

The work reported here supports the concept according to which mixing

layers have basic structures which consist essentially of array: of relatively

large vortices or eddies, moving downstream, but keeping their identity

for fairly long periods. The term 'coherent struc:turez' has been coined

for these eddies. The present data have shown that this type of large

scale structure can be detected in jet flames and that the ionisation probes

with their high frequency response, can be used to derive the spectra and

space-time cross-correlations required for the investigation of these structures,

rather analogous to the use of hot wires in cold jets. This is because the

reaction zones, which the ionisation probes detect, are strong'_y interrelated

with the larger eddies, both in their spatial distributions and their convective

properties.

Conditional sampling techniques 11, 12 have shown that the two interfaces

on either side of the cold mixing layers, behave rather independently of each

other. However, as has been discussed on the basis of earlier data, 1 the

'double structure' noted in the present jet flame mixing layer, appears to

have a different source than these cold jet observations. The Flow moving

outer, large eddies appear to result from a separate instability mechanism

than the rather smaller, faster moving eddies on the inner side of the mixing

5

i
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layer.

RoCent models 
13, 14 for 

mixing layers without heat release, have

been bused upon an axial array of :similar vortices or large eddies, being

c:onvocted downstream. This ;provides some clarification on the entrainment

and mixing mochani:,ms: the leading edge of the eddy induces an outward flow

of potential core fluid, while the trailing edge entrains fluid from the

outer low velocity region.

The two strQams are engulfed by the eddy, within which rapid micromi.xing

occurs. Yule 15 proposed that for such a situation in the combustion case,

reaction would occur pri.marily in relatively narrow regions near the outer

edges of the eddies, where stoichiometric conditions existed. Thus reaction

Tone structures and movements should provide information on the eddy structures

with which thev are associated. The present data clearly support this proposal,

with the added complication of the possible coexistence of two distinct eddy

types at any axial station, depending upon the equivalence ratio and Re of

the fuel jet. it is important- to note that the bulk of the data reported

here are for transitional jet flames, i.e. for regions near the burner where

the stabilizing force of viscosity is important. This region has been

chosen for initial study, firstly, because it is an ideal situation for the

development of instrumentation techniques and physical models and, secondly,

for direct comparison with the predictions of time stepping computer models.

However it has been described  how large coherent eddies can be detected

for the full flame length, albeit increasing in complexity as they move down-

stream. The effects of combustion on the mixing layer include changes in

thz initial instability characteristics, increase in gas viscosity with i.nc2f:jse

in temperature and flow changes due to expansion. Some of these effects have

been reported and the most obvious result, found for velocity measurements)

in a flame with Re = 10 4 and $ = 10.4 and in non-burning flow with the same

Reynolds number, showed that the potential core in cold flow disappears at

x/D -̂,,'4, while in the flame it was still present at x/D = 20. This shows

f
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the strong influence of co;,bustion on the mixing chdract rist•ies of the jet.

The s,fine observation van be made regarding the velocity profiles shown in

Figure 1 for all of the flumes studied here. :`icr,s. °rr l also clearly demon-

strates  the 'humps' and inflexion points found in the flames, but not in

the cold jets. These humps are likely to be related to the double vortex

structure of the flame mixing layors. This double stricture is confirmed by

the ionisation probe measurements, including both LAP- spectra and correlations

of ion current signal. As shown by Figure 3, for the lowest cquivalolice

ratio, when the region of stoichiumetry (and thus the main reaction zolle) is

near the muting layer centre, the :signals are most strongly affected by the

lower frequency vortices. When the measuring point is nearer the inner

interface, or for higher Re and higher ^, the influence of the higher velocity,

higher frequency, structures --I evident. A small positive shift was observed

(Fig. 4) with increasing Reynolds number, in the low frequency peaks i.n

the spectra of flames with the same equivalence ratio. This is in qualitative

agreement with what one would expect for the Kelvin-Helmholtz instabilities

in the cold jet case.

From the measurements presented in Figure 5, it appears that the average,

large vortex, passing frequency aL r/D = 0.4 as detected by the ionisation

probe (corresponding to the reciprocal of the delay time from the origin 	
f

to the second peak in the auto-correlogram) is relatively constant. On the
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other hand, the average convection velocity of these vortices (obtained from

cross-correlation measurements in the same flame and radial positicn) increases

almost linearly with axial distance (Fig. 9). We may conclude that tike scale

of the vortices increases proportionally to convection velocity. This ir,cic.ase

is likely to be attributable to dilatation accompanying heat release although

a contribution from buoyancy forces is also present. 'There is also photographic

evidence of movement of the eddies inwards, towards the jet flame centre, which

should also be accompanied by acceleration.

L
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From the profi.l os of flaw volooit.y and cuiwuctJon voloci:t;y at the

^a ,	 social : tai.ican (Fig. l0) , it rosy kre nc ticc;d that t_2ie lat,t,er is a rr,fast

const-wit across the mixing layer., and its value is 0.3	 Uc/UJ .< 0.45

for the regions and flames studied. This is significantly less than the

value U J /Uc -s 0.6 found for large eddies in cold jets and it is again

indicative of the influence of the outer vortices in the flame and their

dominating contributions to the ionisation probe signals.

It is intc.,rosting to note than the inner, high frequ^,nc:y, vortices

can be detected in the cross-correl.at.ions for contain flames and their

convection velocities (with U c/UJ = 0.85 UJ ) are in good agruoment with those

measured from cind films. Theso observations acre consistent with one of

the classical concepts of turbulence by which large eddies induce convection

velocities which are relatively constant across the flow, and significantly

different from local mean particle velocities, whilst small eddies tend to

be convected at close to the local mean velocity. If one assumes that the

establishment of the 'turbulent shapes' of auto-correlations is a reasonable

indication of the establishment of turbulent flow, data such as that shown

in Figure 5 can be used to estimate the length of the flame transition

regions TT . It is interesting to note: that in general XT does not increase

between the cold and jet flame cases, to the same extent as the observed

increase in the jet potential core length. For example, for the flow with

Re = 104 and ^ = 2.62, „T increases from 4D to 12D between the cold jet and

jet flame cases; while the jet potential core length increases from 4D to

24D approximately.

The above represents a selection of data which is intended to show

the usefulness of the multiple-ionisation probe technique for the examination

of flame structure, when combined with statistical data analysis techniques

with variation in spatial separation and time delay. In addition to information

on local reaction rates, the technique provides data on eddy size, eddy

e
t

4
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conve-c;tinn, Qddy Stitt-raes,ion, tr..msition, 1,(-rio(livit.y ctc. For T-' full

ippr oriat ion of the flame structure using this t-chni.(lan, r.xtt-nsive s;ipporting

data, rising uther mvasurc ment tixrhniquos, are roquired. This is bi,-yond the

beope of the rolati.vely r( sGrlcted longt:h of the pret;ent papox; but it is

woo t hwhile to note that such data have, and are continuing to bo,Joidved by

the authors, for rxartiple by using temperature, velocity and ionisation

probes simultaneously to gain more dct.ailed information on eddy si1-lirtlire.

It must also be umph;isisod that although those re alts ,ire of ini:t-i (:st in

their own right, the ultimate overall objective of the authors' 1 r(-t:4-arch

is to provide data which are of fundxnental use in the development of flaw

models developed in parallel; hr;mve the systematic variation in initial

flow conditions and the simple and carefully conirolled initial conditions.

Finally the great importance of the 1.argt--r scales of motion in the flames,

both transitional and turbulent, should again be otr,phasised on the basis

of the large bulk of data now gathered in these flames by the authors, 1, 8, 12

We are convinced that physically realistic turbulent combustion moae°ls must

include some of the effects attributable to these relatively repetitive,

strong and coherent eddies which appear to be a common, if not uilivi rszal

fcaat.ure of transitional and turbulent shear flow.
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FIG. 1	 Mean ion current hnd velocity profiles at axial distances X/D 8
and 16, for flame's with equivalence ratio 4>	 2.62;
Reynolds number: Q 5 x 10 3 , a loll , O 1.5 x 104.

FIG. 2	 Signals from two ionisation probes in flame with Re = 104 and
0 = 2.62. Radial position r/D = 0.5; probe separation 	 x = 10 mm;
axial (upstream) probe position: (A) x/D = 16.2, (B) x/D = 8.2.
Lower traces correspond to upstream probe.

FIG. 3	 Power spectra of ion
in two flames; Re
(A) ^ = 2.62;	 (B) ¢

FIG. 4 Power spectra of ion
ratio and variation
ratio ^ = 2.62: (A)

current at different longitudinal positions
104 r/D = 0.5, equivalence ratios:
= lo. 4.

current in flames with fixed equivalence
In Re; r/D = 0.5, x/D = 4, equivalence
5 x 10 3 , (B) 104 , (C) 1.5 x 104

FIG. 5	 Autocor,relations of ionisation probe signal for variation of
distance downstream. Re = 10 4 ; ^ = 2.62; r/D = 0.5;
x/D:	 (A) 4.6, (B) 6.6, (C) 8.6, (D) 10.6, (E) 12.2.

FIG. 6	 Variation of periodicity of autocorrelation curve with downstream
distance. Re = 104 ; r/D = 0.5; equivalence ratios:
A , 10.4;	 O	 , 2.62.

kIG. 7	 Cross-correlations with variation in streamwise probe separata.,..
Re = 1.5 x 10 4 ; ^ = 2.62; r/D = 0.5; axial position (fixed
probe) x/D = 4; probe separation: (A) 5 mm; (B) 15 mm;
(C) 30 mm; (D) 50 mm; (E) 80 mm.

FIG. 8	 Convection times from main peaks of cross-correlations;
r/D = 0.5; flame parameters: 	 D	 Re = 104 ,	 = 2.62;
O Re = 104 , $ = 10.4; A Re = 1.5 x 10 4 , ^ = 2.62.
Also convection times from 'high frequency peaks':* Re = 104,
= 10.4; ARe = 1.5 x 104 , 0 = 2.62.

FIG. 9	 Axial variation of convection velocity; r/D = 0.5; Re = 104

	

= 2.62; O from probes at fixed separation 	 A x = 10 mm;
Q From probes with varying separation, fixed probe at x = 4D.

FIG. 10 Velocity measured by laser anemometry ([ ) and convection
velocity obtained from cross-correlation (0) at x/D = 10
in a flame with Re = 10 4 and 0 = 2.62.
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