78 research outputs found

    Tranquility of the Rain

    Get PDF

    Young onset diabetes in Asian Indians is associated with lower measured and genetically determined beta-cell function:an INSPIRED study

    Get PDF
    Aims/hypothesis: South Asians in general, and Asian Indians in particular, have higher risk of type 2 diabetes compared with white Europeans, and a younger age of onset. The reasons for the younger age of onset in relation to obesity, beta cell function and insulin sensitivity are under-explored. Methods: Two cohorts of Asian Indians, the ICMR-INDIAB cohort (Indian Council of Medical Research-India Diabetes Study) and the DMDSC cohort (Dr Mohan’s Diabetes Specialties Centre), and one of white Europeans, the ESDC (East Scotland Diabetes Cohort), were used. Using a cross-sectional design, we examined the comparative prevalence of healthy, overweight and obese participants with young-onset diabetes, classified according to their BMI. We explored the role of clinically measured beta cell function in diabetes onset in Asian Indians. Finally, the comparative distribution of a partitioned polygenic score (pPS) for risk of diabetes due to poor beta cell function was examined. Replication of the genetic findings was sought using data from the UK Biobank. Results: The prevalence of young-onset diabetes with normal BMI was 9.3% amongst white Europeans and 24–39% amongst Asian Indians. In Asian Indians with young-onset diabetes, after adjustment for family history of type 2 diabetes, sex, insulin sensitivity and HDL-cholesterol, stimulated C-peptide was 492 pmol/ml (IQR 353–616, p<0.0001) lower in lean compared with obese individuals. Asian Indians in our study, and South Asians from the UK Biobank, had a higher number of risk alleles than white Europeans. After weighting the pPS for beta cell function, Asian Indians have lower genetically determined beta cell function than white Europeans (p<0.0001). The pPS was associated with age of diagnosis in Asian Indians but not in white Europeans. The pPS explained 2% of the variation in clinically measured beta cell function, and 1.2%, 0.97%, and 0.36% of variance in age of diabetes amongst Asian Indians with normal BMI, or classified as overweight and obese BMI, respectively. Conclusions/interpretation: The prevalence of lean BMI in young-onset diabetes is over two times higher in Asian Indians compared with white Europeans. This phenotype of lean, young-onset diabetes appears driven in part by lower beta cell function. We demonstrate that Asian Indians with diabetes also have lower genetically determined beta cell function

    Lower dietary intake of plant protein is associated with genetic risk of diabetes-related traits in urban Asian Indian adults

    Get PDF
    The increasing prevalence of type 2 diabetes among South Asians is caused by a complex interplay between environmental and genetic factors. We aimed to examine the impact of dietary and genetic factors on metabolic traits in 1062 Asian Indians. Dietary assessment was performed using a validated semi-quantitative food frequency questionnaire. Seven single nucleotide polymorphisms (SNPs) from the Transcription factor 7-like 2 and fat mass and obesity-associated genes were used to construct two metabolic genetic risk scores (GRS): 7-SNP and 3-SNP GRSs. Both 7-SNP GRS and 3-SNP GRS were associated with a higher risk of T2D (p = 0.0000134 and 0.008, respectively). The 3-SNP GRS was associated with higher waist circumference (p = 0.010), fasting plasma glucose (FPG) (p = 0.002) and glycated haemoglobin (HbA1c) (p = 0.000066). There were significant interactions between 3-SNP GRS and protein intake (% of total energy intake) on FPG (Pinteraction = 0.011) and HbA1c (Pinteraction = 0.007), where among individuals with lower plant protein intake (1 risk allele had higher FPG (p = 0.001) and HbA1c (p = 0.00006) than individuals with ≤1 risk allele. Our findings suggest that lower plant protein intake may be a contributor to the increased ethnic susceptibility to diabetes described in Asian Indians. Randomised clinical trials with increased plant protein in the diets of this population are needed to see whether the reduction of diabetes risk occurs in individuals with prediabetes

    Human gain-of-function variants in HNF1A confer protection from diabetes but independently increase hepatic secretion of atherogenic lipoproteins

    Get PDF
    Loss-of-function mutations in hepatocyte nuclear factor 1A (HNF1A) are known to cause rare forms of diabetes and alter hepatic physiology through unclear mechanisms. In the general population, 1:100 individuals carry a rare, protein-coding HNF1A variant, most of unknown functional consequence. To characterize the full allelic series, we performed deep mutational scanning of 11,970 protein-coding HNF1A variants in human hepatocytes and clinical correlation with 553,246 exome-sequenced individuals. Surprisingly, we found that ∼1:5 rare protein-coding HNF1A variants in the general population cause molecular gain of function (GOF), increasing the transcriptional activity of HNF1A by up to 50% and conferring protection from type 2 diabetes (odds ratio [OR] = 0.77, p = 0.007). Increased hepatic expression of HNF1A promoted a pro-atherogenic serum profile mediated in part by enhanced transcription of risk genes including ANGPTL3 and PCSK9. In summary, ∼1:300 individuals carry a GOF variant in HNF1A that protects carriers from diabetes but enhances hepatic secretion of atherogenic lipoproteins.publishedVersio
    • …
    corecore