5 research outputs found
SCF cdc4 regulates msn2 and msn4 dependent gene expression to counteract hog1 induced lethality
L'activació sostinguda de Hog1 porta a una inhibició del creixement cel·lular. En aquest treball, hem observat que el fenotip de letalitat causat per l'activació sostinguda de Hog1 és parcialment inhibida per la mutació del complexe SCFCDC4. La inhibició de la mort causada per l'activació sostinguda de Hog1 depèn de la via d'extensió de la vida. Quan Hog1 s'activa de manera sostinguda, la mutació al complexe SCFCDC4 fa que augmenti l'expressió gènica depenent de Msn2 i Msn4 que condueix a una sobreexpressió del gen PNC1 i a una hiperactivació de la deacetilassa Sir2. La hiperactivació de Sir2 és capaç d'inhibir la mort causada per l'activació sostinguda de Hog1. També hem observat que la mort cel·lular causada per l'activació sostinguda de Hog1 és deguda a una inducció d'apoptosi. L'apoptosi induïda per Hog1 és inhibida per la mutació al complexe SCFCDC4. Per tant, la via d'extensió de la vida és capaç de prevenir l'apoptosi a través d'un mecanisme desconegut.Sustained Hog1 activation leads to an inhibition of cell growth. In this work, we have observed that the lethal phenotype caused by sustained Hog1 activation is prevented by SCFCDC4 mutants. The prevention of Hog1-induced cell death by SCFCDC4 mutation depends on the lifespan extension pathway. Upon sustained Hog1 activation, SCFCDC4 mutation increases Msn2 and Msn4 dependent gene expression that leads to a PNC1 overexpression and a Sir2 deacetylase hyperactivation. Then, hyperactivation of Sir2 is able to prevent cell death caused by sustained Hog1 activation. We have also observed that cell death upon sustained Hog1 activation is due to an induction of apoptosis. The apoptosis induced by Hog1 is decreased by SCFCDC4 mutation. Therefore, lifespan extension pathway is able to prevent apoptosis by an unknown mechanism
Sir2 plays a key role in cell fate determination upon SAPK activation
Although the benefit of sirtuin activation in age-related diseases is well-characterized, the benefit of sirtuin activation in acute diseases has been elusive. Here we discuss that, at least in yeast, Sir2 activation prevents programmed cell death induced by the sustained activation of the stress activated protein kinase (SAPK) Hog1, the yeast homologue of the p38 SAPK. Sir2 prevents ROS formation and maximize cell survival upon SAPK activation. The conserved function of Sir2 in age-related diseases and the conserved role of SAPKs open the possibility of a novel role for sirtuins in cell fate determination in eukaryotic cells.We thank to EdeN for constant support. The laboratory of FP and EdeN is supported by grants from the Ministerio de Ciéncia y Innovación, the Consolider Ingenio 2010 programme and FP7 UNICELLSYS grant to F.P, EdeN. F.P. is also supported by the Fundación Marcelino Botín (FMB) and ICREA Acadèmia (Generalitat de Catalunya
Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase
Exposure of yeast to high osmolarity induces a transient activation of the Hog1 stress-activated protein kinase (SAPK), which is required for cell survival under these conditions. However, sustained activation of the SAPK results in a severe growth defect. We found that prolonged SAPK activation leads to cell death, which is not observed in nma111 cells, by causing accumulation of reactive oxygen species (ROS). Mutations of the SCF(CDC4) ubiquitin ligase complex suppress cell death by preventing the degradation of Msn2 and Msn4 transcription factors. Accumulation of Msn2 and Msn4 leads to the induction of PNC1, which is an activator of the Sir2 histone acetylase. Sir2 is involved in protection against Hog1-induced cell death and can suppress Hog1-induced ROS accumulation. Therefore, cell death seems to be dictated by the balance of ROS induced by Hog1 and the protective effect of Sir2.This work was supported by grants from the Ministerio de Ciència y Innovación (BIO2009-07762) and Consolider Ingenio 2010 programme (grant CSD2007-0015), UNICELLSYS from FP7, as well as supported byFundación Marcelino Botín. F.P. is the recipient of the Institució Catalana de Recerca i Estudis Avançats Acadèmia (Generalitat de Catalunya). D.A.S. is supported by grants from the National Institute on Aging National Institutes of Health, the Ellison Medical Foundation and the Glenn Foundation for Medical Research
Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase
Exposure of yeast to high osmolarity induces a transient activation of the Hog1 stress-activated protein kinase (SAPK), which is required for cell survival under these conditions. However, sustained activation of the SAPK results in a severe growth defect. We found that prolonged SAPK activation leads to cell death, which is not observed in nma111 cells, by causing accumulation of reactive oxygen species (ROS). Mutations of the SCF(CDC4) ubiquitin ligase complex suppress cell death by preventing the degradation of Msn2 and Msn4 transcription factors. Accumulation of Msn2 and Msn4 leads to the induction of PNC1, which is an activator of the Sir2 histone acetylase. Sir2 is involved in protection against Hog1-induced cell death and can suppress Hog1-induced ROS accumulation. Therefore, cell death seems to be dictated by the balance of ROS induced by Hog1 and the protective effect of Sir2.This work was supported by grants from the Ministerio de Ciència y Innovación (BIO2009-07762) and Consolider Ingenio 2010 programme (grant CSD2007-0015), UNICELLSYS from FP7, as well as supported byFundación Marcelino Botín. F.P. is the recipient of the Institució Catalana de Recerca i Estudis Avançats Acadèmia (Generalitat de Catalunya). D.A.S. is supported by grants from the National Institute on Aging National Institutes of Health, the Ellison Medical Foundation and the Glenn Foundation for Medical Research
The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress
Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.This research was supported by ‘La Caixa’ fellowships to N.A., G.N. and M.Maier, and grants from the Spanish Ministry of Economy and Competitivity (BFU2011-30185 and CDS2009-00016 to M.-I.G.; BFU2015-71308 and BFU2013-50245-EXP to J.T.-R.; and BFU2009-08213 and BFU2012-37162/nto M.Mendoza), and from the European Research Council (ERC Starting Grant 260965 to M.Mendoza). We acknowledge support from the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-020