7 research outputs found

    GREEN SYNTHESIS OF SILVER NANOPARTICLE FROM LEAF EXTRACT OF AEGLE MARMELOS AND EVALUATION OF ITS ANTIBACTERIAL ACTIVITY

    Get PDF
    Objective: The synthesis of metal nanoparticle is a growing area of research in modern material science and technology. Utilization of the silver nanoparticles in the field of biomedical nanotechnology and nanomedicines is rapidly growing because of their antimicrobial, anticancer, antioxidant property and less toxicity. Nanoparticles are synthesized by chemical methods, but are not eco-friendly. The objective of the study is to develop a fast, eco-friendly and convenient method for silver nanoparticle synthesis.Methods: In this method utilization of the reducingproperty of Aegle marmelos leaf extract was done for synthesis of stable silver nanoparticles.  Characterization of the metal nanoparticles was carried out by UV- Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction microscopy (XRD), Energy Dispersive X-ray spectroscopy (EDX) and zeta potential analysis.Results: This result showed the average particle size of 15 -30 nm and spherical structure of stable silver nanoparticles. Green synthesized nanoparticles tested for its antibacterial activity by the well diffusion method. Silver nanoparticles had shown a more inhibitory effect against Streptococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa than Staphylococcus aureus and Aeromonas hydrophila at 25, 50 and 100 µg/ml concentrations.Conclusion: This study is recommends the use of Aegle marmelos leaves for the synthesis of silver nanoparticles and can be applied as an antimicrobial agent.Â

    Preparation and Characterization of Activated Carbons from Parthenium biomass by Physical and Chemical Activation Techniques

    No full text
    Parthenium hysterphorous (Linn), a perennial weed of no known beneficial use was introduced as a containment of food grains imported from US with P1480 scheme. The colonization efficiency of the weed was much higher than other indigenous weeds resulting in the reduction of cultivable areas of agricultural lands. Therefore, attention was focused to find out the potential use of its biomass. In the present study the preparation and characterization of activated carbons by physical and chemical activation methods are reported and aims to prepare relatively well developed porous activated carbons as well as study various conditions and parameters that were involved during the process. Among the carbons prepared Zncl2 impregnated carbon at the ratio of 1 was found to possess the characteristic features of an efficient adsorbent. Experimental results showed that pyrolytic and activation conditions leading to various final average temperatures had significant effect on the properties of activated carbons prepared
    corecore