6 research outputs found

    Prader-Willi syndrome : A study comparing deletion and uniparental disomy cases with reference to autism spectrum disorders

    No full text
    Prader Willi Syndrome (PWS) is a neuro-genetic disorder. It has been reported that cases due to paternal deletion 15q11-13 (Del) behave differently to cases due to uniparental disomy (UPD). Comparison of the two forms of PWS has, to date, not included the frequency of autistic behaviours, even though there are reports of an association between maternal duplications of 15q11-13 and autism spectrum disorders (ASD). It was predicted that maternal UPD PWS cases would be more prone to ASD than Del PWS cases due to their duplicated maternally expressed genes. A preliminary test of the hypothesis was conducted using postal and telephone surveys of matched, genetically verified, UPD and Del cases using the Autism Screening Questionnaire (ASQ) and the Vineland Adaptive Behaviour Scales (VABS). As predicted, UPD cases were reported as exhibiting significantly more autistic symptomatology. They also were born to older mothers and were reported on the VABS to have more deficits in motor control problems and fewer adaptive skills in the Daily Living Skills domain. Del cases were reportedly more skilled at jigsaw puzzles. The results lend further support to the notion that abnormality in the expression of maternal imprinted 15q11-13 genes may confer a susceptibility to ASD. They also suggest that there may be cognitive differences between the groups in processing visuo-spatial information

    Prader-Willi syndrome: intellectual abilities and behavioural features by genetic subtype

    No full text
    Background: Studies of chromosome 15 abnormality have implicated over-expression of paternally imprinted genes in the 15q11–13 region in the aetiology of autism. To test this hypothesis we compared individuals with Prader-Willi syndrome (PWS) due to uniparental disomy (UPD – where paternally imprinted genes are over-expressed) to individuals with the 15q11–13 deletion form of the syndrome (where paternally imprinted genes are not over-expressed). We also tested reports that PWS cases due to the larger type I (TI) form of deletion show differences to cases with the smaller type II (TII) deletion.Method: Ninety-six individuals with PWS were recruited from genetic centres and the PWS association. Forty-nine individuals were confirmed as having maternal UPD of chromosome 15 and were age and sex matched to 47 individuals with a deletion involving 15q11–13 (32 had the shorter (T II) deletion, and 14 had the longer (TI) deletion). Behavioural assessments were carried out blind to genetic status, using the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnostic Interview (ADI), the Autism Screening Questionnaire (ASQ), the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS), the Vineland Adaptive Behaviour Scales (VABS), and measurements of intellectual ability, including the Wechsler and Mullen Scales and Raven's Matrices.Results: UPD cases exhibited significantly more autistic-like impairments in reciprocal social interaction on questionnaire, interview and standardised observational measures. Comparison of TI and TII deletion cases revealed few differences, but ability levels tended to be lower in the TI deletion cases.Conclusions: Findings from a large study comparing deletion and UPD forms of Prader-Willi syndrome were consistent with other evidence in indicating that paternally imprinted genes in the 15q11–13 region constitute a genetic risk factor for aspects of autistic symptomatology. These genes may therefore play a role in the aetiology of autism. By contrast with another report, there was no clear-cut relationship between the size of the deletion and the form of cognitive and behavioural phenotype

    Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders

    No full text
    Objectives: The frequency of abnormalities of 15q11-q13 and other possibly causal medical disorders including karyotypic abnormalities was investigated in an unselected series of children who were referred to one of two autism assessment centres.Methods: Two hundred and twenty-one cases were assessed using the Autism Diagnostic Interview and Observation Schedule and, where appropriate, standardized tests of intelligence and language abilities. Medical histories and notes were reviewed, and molecular and cytogenetic investigations used to detect chromosomal abnormalities.Results: One hundred and eighty-one cases were diagnosed according to International Classification of Diseases - version 10 criteria as having an autism spectrum disorder (autistic-like Pervasive Developmental Disorder) and 40 cases as having other disorders. Twenty-one (11.6%) of the children with autism spectrum disorders had a possibly causal condition compared with six (15%) of the children with other diagnoses. One child with an autism spectrum disorder had a paternally inherited familial duplication of 15q11-13. The pattern of genotype-phenotype correlation within the family indicated that this form of abnormality might carry a risk for developmental difficulties, although the risk did not appear to be specific for autism spectrum disorders.Conclusion: The overall rate of possibly causal medical and cytogenetic conditions in children with autism spectrum disorders was low and no different from the rate of disorder in children with other developmental/neuropsychiatric disorders that attended the same clinics. Further research is required to determine whether paternal duplication of 15q11-13 gives rise to adverse developmental outcomes

    Publisher Correction: Whole-genome sequencing of a sporadic primary immunodeficiency cohort (Nature, (2020), 583, 7814, (90-95), 10.1038/s41586-020-2265-1)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore