54 research outputs found

    Identification of signaling pathways in early mammary gland development by mouse genetics

    Get PDF
    The mammary gland develops as an appendage of the ectoderm. The prenatal stage of mammary development is hormone independent and is regulated by sequential and reciprocal signaling between the epithelium and the mesenchyme. A number of recent studies using human and mouse genetics, in particular targeted gene deletion and transgenic expression, have identified some of the signals that control specific steps in development. This process involves cell specification and proliferation, reciprocal tissue interactions and cell migration. Since some of these events are recapitulated during tumorigenesis, an understanding of these signaling pathways may contribute to the development of targeted therapies and novel drugs

    Key stages of mammary gland development: Molecular mechanisms involved in the formation of the embryonic mammary gland

    Get PDF
    The development of the embryonic mammary gland involves communication between the epidermis and mesenchyme and is coordinated temporally and spatially by various signaling pathways. Although many more genes are likely to control mammary gland development, functional roles have been identified for Wnt, fibroblast growth factor, and parathyroid hormone-related protein signaling. This review describes what is known about the molecular mechanisms that regulate embryonic mammary gland development

    Ectodermal Influx and Cell Hypertrophy Provide Early Growth for All Murine Mammary Rudiments, and Are Differentially Regulated among Them by Gli3

    Get PDF
    Mammary gland development starts in utero with one or several pairs of mammary rudiments (MRs) budding from the surface ectodermal component of the mammalian embryonic skin. Mice develop five pairs, numbered MR1 to MR5 from pectoral to inguinal position. We have previously shown that Gli3Xt-J/Xt-J mutant embryos, which lack the transcription factor Gli3, do not form MR3 and MR5. We show here that two days after the MRs emerge, Gli3Xt-J/Xt-J MR1 is 20% smaller, and Gli3Xt-J/Xt-J MR2 and MR4 are 50% smaller than their wild type (wt) counterparts. Moreover, while wt MRs sink into the underlying dermis, Gli3Xt-J/Xt-J MR4 and MR2 protrude outwardly, to different extents. To understand why each of these five pairs of functionally identical organs has its own, distinct response to the absence of Gli3, we determined which cellular mechanisms regulate growth of the individual MRs, and whether and how Gli3 regulates these mechanisms. We found a 5.5 to 10.7-fold lower cell proliferation rate in wt MRs compared to their adjacent surface ectoderm, indicating that MRs do not emerge or grow via locally enhanced cell proliferation. Cell-tracing experiments showed that surface ectodermal cells are recruited toward the positions where MRs emerge, and contribute to MR growth during at least two days. During the second day of MR development, peripheral cells within the MRs undergo hypertrophy, which also contributes to MR growth. Limited apoptotic cell death counterbalances MR growth. The relative contribution of each of these processes varies among the five MRs. Furthermore, each of these processes is impaired in the absence of Gli3, but to different extents in each MR. This differential involvement of Gli3 explains the variation in phenotype among Gli3Xt-J/Xt-J MRs, and may help to understand the variation in numbers and positions of mammary glands among mammals

    Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice

    Get PDF
    The ability to genetically manipulate mice has led to rapid progress in our understanding of the roles of different gene products in human disease. Transgenic mice have often been created in the FVB/NJ (FVB) strain due to its high fecundity, while gene-targeted mice have been developed in the 129/SvJ-C57Bl/6J strains due to the capacity of 129/SvJ embryonic stem cells to facilitate germline transmission. Gene-targeted mice are commonly backcrossed into the C57Bl/6J (B6) background for comparison with existing data. Genetic modifiers have been shown to modulate mammary tumor latency in mouse models of breast cancer and it is commonly known that the FVB strain is susceptible to mammary tumors while the B6 strain is more resistant. Since gene-targeted mice in the B6 background are frequently bred into the polyomavirus middle T (PyMT) mouse model of breast cancer in the FVB strain, we have sought to understand the impact of the different genetic backgrounds on the resulting phenotype. We bred mice deficient in the inducible nitric oxide synthase (iNOS) until they were congenic in the PyMT model in the FVB and B6 strains. Our results reveal that the large difference in mean tumor latencies in the two backgrounds of 53 and 92 days respectively affect the ability to discern smaller differences in latency due to the Nos2 genetic mutation. Furthermore, the longer latency in the B6 strain enables a more detailed analysis of tumor formation indicating that individual tumor development is not stoichastic, but is initiated in the #1 glands and proceeds in early and late phases. NO production affects tumors that develop early suggesting an association of iNOS-induced NO with a more aggressive tumor phenotype, consistent with human clinical data positively correlating iNOS expression with breast cancer progression. An examination of lung metastases, which are significantly reduced in PyMT/iNOS(−/−) mice compared with PyMT/iNOS(+/+) mice only in the B6 background, is concordant with these findings. Our data suggest that PyMT in the B6 background provides a useful model for the study of inflammation-induced breast cancer

    SNAI1 and SNAI2 Are Asymmetrically Expressed at the 2-Cell Stage and Become Segregated to the TE in the Mouse Blastocyst

    Get PDF
    SNAI1 and SNAI2 are transcription factors that initiate Epithelial-to-Mesenchymal cell transitions throughout development and in cancer metastasis. Here we show novel expression of SNAI1 and SNAI2 throughout mouse preimplantation development revealing asymmetrical localization of both SNAI1 and SNAI2 in individual blastomeres beginning at the 2-cell stage through to the 8-cell stage where SNAI1 and SNAI2 are then only detected in outer cells and not inner cells of the blastocyst. This study implicates SNAI1 and SNAI2 in the lineage segregation of the trophectoderm and inner cell mass, and provides new insight into these oncogenes

    Cytokeratin expression during mouse embryonic and early postnatal mammary gland development

    Get PDF
    Cytokeratins are intermediate filament proteins found in most epithelial cells including the mammary epithelium. Specific cytokeratin expression has been found to mark different epithelial cell lineages and also to associate with putative mammary stem/progenitor cells. However, a comparative analysis of the expression of cytokaratins during embryonic and postnatal mammary development is currently lacking. Moreover, it is not clear whether the different classes of putative mammary stem/progenitor cells exist during embryonic development. Here, we use double/triple-label immunofluorescence and immunohistochemistry to systematically compare the expression of cytokeratin 5 (K5), cytokeratin 6 (K6), cytokeratin 8 (K8), cytokeratin 14 (K14) and cytokeratin 19 (K19) in embryonic and early postnatal mouse mammary glands. We show that K6+ and K8+/K14+ putative mammary progenitor cells arise during embryogenesis with distinct temporal and spatial distributions. Moreover, we describe a transient disconnection of the expression of K5 and K14, two cytokeratins that are often co-expressed, during the first postnatal weeks of mammary development. Finally, we report that cytokeratin expression in cultured primary mammary epithelial cells mimics that during the early stages of postnatal mammary development. These studies demonstrate an embryonic origin of putative mammary stem/progenitor cells. Moreover, they provide additional insights into the use of specific cytokeratins as markers of mammary epithelial differentiation, or the use of their promoters to direct gene overexpression or ablation in genetic studies of mouse mammary development

    Characterization of a Novel Fibroblast Growth Factor 10 (Fgf10) Knock-In Mouse Line to Target Mesenchymal Progenitors during Embryonic Development

    Get PDF
    Fibroblast growth factor 10 (Fgf10) is a key regulator of diverse organogenetic programs during mouse development, particularly branching morphogenesis. Fgf10-null mice suffer from lung and limb agenesis as well as cecal and colonic atresia and are thus not viable. To date, the Mlcv1v-nLacZ-24 transgenic mouse strain (referred to as Fgf10LacZ), which carries a LacZ insertion 114 kb upstream of exon 1 of Fgf10 gene, has been the only strain to allow transient lineage tracing of Fgf10-positive cells. Here, we describe a novel Fgf10Cre-ERT2 knock-in line (Fgf10iCre) in which a Cre-ERT2-IRES-YFP cassette has been introduced in frame with the ATG of exon 1 of Fgf10 gene. Our studies show that Cre-ERT2 insertion disrupts Fgf10 function. However, administration of tamoxifen to Fgf10iCre; Tomatoflox double transgenic embryos or adult mice results in specific labeling of Fgf10-positive cells, which can be lineage-traced temporally and spatially. Moreover, we show that the Fgf10iCre line can be used for conditional gene inactivation in an inducible fashion during early developmental stages. We also provide evidence that transcription factors located in the first intron of Fgf10 gene are critical for maintaining Fgf10 expression over time. Thus, the Fgf10iCre line should serve as a powerful tool to explore the functions of Fgf10 in a controlled and stage-specific manner

    Selenium status is positively associated with bone mineral density in healthy aging European men

    Get PDF
    Objective It is still a matter of debate if subtle changes in selenium (Se) status affect thyroid function tests (TFTs) and bone mineral density (BMD). This is particularly relevant for the elderly, whose nutritional status is more vulnerable. Design and Methods We investigated Se status in a cohort of 387 healthy elderly men (median age 77 yrs; inter quartile range 75-80 yrs) in relation to TFTs and BMD. Se status was determined by measuring both plasma selenoprotein P (SePP) and Se. Results The overall Se status in our population was low normal with only 0.5% (2/387) of subjects meeting the criteria for Se deficiency. SePP and Se levels were not associated with thyroid stimulating hormone (TSH), free thyroxine (FT4), thyroxine (T4), triiodothyronine (T3) or reverse triiodothyronine (rT3) levels. The T3/T4 and T3/rT3 ratios, reflecting peripheral metabolism of thyroid hormone, were not associated with Se status either. SePP and Se were positively associated with total BMD and femoral trochanter BMD. Se, but not SePP, was positively associated with femoral neck and ward's BMD. Multivariate linear analyses showed that these associations remain statistically significant in a model including TSH, FT4, body mass index, physical performance score, age, smoking, diabetes mellitus and number of medication use. Conclusion Our study demonstrates that Se status, within the normal European marginally supplied range, is positively associated with BMD in healthy aging men, independent of thyroid function. Thyroid function tests appear unaffected by Se status in this population

    Physicians' attitudes about obesity and their associations with competency and specialty: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physicians frequently report negative attitudes about obesity which is thought to affect patient care. However, little is known about how attitudes toward treating obese patients are formed. We conducted a cross-sectional survey of physicians in order to better characterize their attitudes and explore the relationships among attitudes, perceived competency in obesity care, including report of weight loss in patients, and other key physician, training, and practice characteristics.</p> <p>Methods</p> <p>We surveyed all 399 physicians from internal medicine, pediatrics, and psychiatry specialties at one institution regarding obesity care attitudes, competency, including physician report of percent of their patients who lose weight. We performed a factor analysis on the attitude items and used hierarchical regression analysis to explore the degree to which competency, reported weight loss, physician, training and practice characteristics explained the variance in each attitude factor.</p> <p>Results</p> <p>The overall response rate was 63%. More than 40% of physicians had a negative reaction towards obese patients, 56% felt qualified to treat obesity, and 46% felt successful in this realm. The factor analysis revealed 4 factors–<it>Physician Discomfort/Bias, Physician Success/Self Efficacy, Positive Outcome Expectancy</it>, and <it>Negative Outcome Expectancy</it>. Competency and reported percent of patients who lose weight were most strongly associated with the <it>Physician Success/Self Efficacy </it>attitude factor. Greater skill in patient assessment was associated with less <it>Physician Discomfort/Bias</it>. Training characteristics were associated with outcome expectancies with newer physicians reporting more positive treatment expectancies. Pediatric faculty was more positive and psychiatry faculty less negative in their treatment expectancies than internal medicine faculty.</p> <p>Conclusion</p> <p>Physician attitudes towards obesity are associated with competency, specialty, and years since postgraduate training. Further study is necessary to determine the direction of influence and to explore the impact of these attitudes on patient care.</p
    corecore