72 research outputs found

    The brain decade in debate: VII. Neurobiology of sleep and dreams

    Get PDF
    This article is a transcription of an electronic symposium held on February 5, 2001 by the Brazilian Society of Neuroscience and Behavior (SBNeC) during which eight specialists involved in clinical and experimental research on sleep and dreaming exposed their personal experience and theoretical points of view concerning these highly polemic subjects. Unlike most other bodily functions, sleep and dreaming cannot, so far, be defined in terms of definitive functions that play an ascribable role in maintaining the organism as a whole. Such difficulties appear quite clearly all along the discussions. In this symposium, concepts on sleep function range from a protective behavior to an essential function for maturation of the nervous system. Kleitman's hypothesis [Journal of Nervous and Mental Disease (1974), 159: 293-294] was discussed, according to which the basal state is not the wakeful state but sleep, from which we awake to eat, to protect ourselves, to procreate, etc. Dreams, on the other hand, were widely discussed, being considered either as an important step in consolidation of learning or simply the conscious identification of functional patterns derived from the configuration of released or revoked memorized information.Universidade de SĂŁo Paulo Faculdade de Medicina Instituto de PsiquiatriaUniversity of Laval School of Medicine Department of PhysiologyRutgers State University Center for NeuroscienceUniversidade de SĂŁo Paulo Instituto de CiĂȘncias BiomĂ©dicas Departamento de Fisiologia e BiofĂ­sicaUniversidade Federal de SĂŁo Paulo (UNIFESP) Instituto do SonhoFacultad de Medicina de Montevideo Departamento de FisiologĂ­a NeurofisiologĂ­aFlorida Atlantic University Center for Complex SystemsUniversidade de SĂŁo Paulo Faculdade de Medicina Departamento de NeurologiaUNIFESP, Instituto do SonhoSciEL

    Evidence for an Association Between Hearing Impairment and Disrupted Sleep: Scoping Review

    Get PDF
    Purpose: Hearing impairment (HI) is the most common sensory impairment and may negatively impact sleep through reduced auditory input. Factors associated with HI, such as anxiety regarding communication in daily life, may also adversely impact an individual’s sleep. Here, research on the relationship between HI and sleep disruption was catalogued using scoping review methodology. Methods: A systematic strategy was employed to search various electronic databases. This review is reported according to Preferred Reporting Items for Systematic Review and Meta-analysis Scoping Review Extension (PRISMA-ScR). Results: Sixteen records met inclusion criteria. Studies have investigated sleep in HI as a primary aim in noise exposed workers or large surveys in older participants. Experimental and quasi-experimental studies report alterations to sleep architecture of potential neuroplastic origins. Studies reporting sleep as a secondary aim generally report poorer in sleep in HI participants. Conclusions: This scoping review has catalogued evidence that altered or negatively impacted sleep may be associated with HI. Potential confounding factors, mechanisms, and considerations for future research are discussed

    Characterising the frequency response of impedance changes during evoked physiological activity in the rat brain

    Get PDF
    OBJECTIVE: Electrical impedance tomography (EIT) can image impedance changes associated with evoked physiological activity in the cerebral cortex using an array of epicortical electrodes. An impedance change is observed as the externally applied current, normally confined to the extracellular space is admitted into the conducting intracellular space during neuronal depolarisation. The response is largest at DC and decreases at higher frequencies due to capacitative transfer of current across the membrane. Biophysical modelling has shown that this effect becomes significant above 100 Hz. Recordings at DC, however, are contaminated by physiological endogenous evoked potentials. By moving to 1.7 kHz, images of somatosensory evoked responses have been produced down to 2 mm with a resolution of 2 ms and 200 ÎŒm. Hardware limitations have so far restricted impedance measurements to frequencies  2 kHz using improved hardware. APPROACH: Impedance changes were recorded during forepaw somatosensory stimulation in both cerebral cortex and the VPL nucleus of the thalamus in anaesthetised rats using applied currents of 1 kHz to 10 kHz. MAIN RESULTS: In the cortex, impedance changed by -0.04 ± 0.02 % at 1 kHz, reached a peak of -0.13 ± 0.05 % at 1475 Hz and decreased to -0.05 ± 0.02 % at 10 kHz. At these frequencies, changes in the thalamus were -0.26 ± 0.1%, -0.4 ± 0.15 % and -0.08 ± 0.03 % respectively. The signal-to-noise ratio was also highest at 1475 Hz with values of -29.5 ± 8 and -31.6 ±10 recorded from the cortex and thalamus respectively. Signficance: This indicates that the optimal frequency for imaging cortical and thalamic evoked activity using fast neural EIT is 1475 Hz

    Prospective evaluation of minimal residual disease in the phase II FORTE trial: a head-to-head comparison between multiparameter flow cytometry and next-generation sequencing

    Get PDF
    Background: Limited data are available on the concordance between multiparameter flow cytometry (MFC) and next-generation sequencing (NGS) for minimal residual disease (MRD) detection in a large trial for multiple myeloma (MM) patients. Methods: MRD was explored in the FORTE trial for transplant-eligible MM patients randomised to three carfilzomib-based induction-intensification-consolidation treatments and carfilzomib-lenalidomide (KR) vs R maintenance. MRD was assessed by 8-colour 2nd-generation flow cytometry in patients with ≄very good partial response before maintenance. NGS was performed in case of suspected complete response (CR) in a correlative subanalysis. Biological/prognostic concordance between MFC and NGS, conversion to MRD negativity during maintenance, and 1-year/2-year sustained MRD negativity were explored. Findings: Between September 28, 2015 and December 22, 2021, 2020 samples were available for MFC and 728 for the simultaneous MFC/NGS correlation in the "suspected CR population". Median follow-up was 62 months. Biological agreement was 87% at the 10-5 and 83% at the 10-6 cut-offs. A remarkable prognostic concordance was observed: hazard ratios in MFC-MRD and NGS-MRD-negative vs -positive patients were 0.29 and 0.27 for progression-free survival (PFS) and 0.35 and 0.31 for overall survival, respectively (p < 0.05). During maintenance, 4-year PFS was 91% and 97% in 1-year sustained MFC-MRD-negative and NGS-MRD-negative patients (10-5), respectively, and 99% and 97% in 2-year sustained MFC-MRD-negative and NGS-MRD-negative patients, regardless of treatment received. The conversion rate from pre-maintenance MRD positivity to negativity during maintenance was significantly higher with KR vs R both by MFC (46% vs 30%, p = 0.046) and NGS (56% vs 30%, p = 0.046). Interpretation: The significant biological/clinical concordance between MFC and NGS at the same sensitivity suggests their possible use in the evaluation of one of the currently strongest predictors of outcome. Funding: Amgen, Celgene/Bristol Myers Squibb, Multiple Myeloma Research Foundation

    Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    Get PDF
    Background: The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings: Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACE
    • 

    corecore