12 research outputs found

    Role of lipotoxicity in insulin resistance in subtotally nephrectomized mouse model

    Get PDF
    Chronic kidney disease (CKD) is associated with a large range of metabolic alterations among which insulin resistance and dyslipidemia. We hypothesize that a phenomenon of lipotoxicity and ectopic fat redistribution could be responsible for the insulin-resistance associated to CKD.C57BL/6 mice underwent a 5/6 nephrectomy and were compared to pair fed sham-operated mice. Insulin sensitivity was estimated through intra-peritoneal insulin (ipITT) and glucose tolerance (ipGTT) tests. Anthropometric (body weight, lean and fad pad mass) and metabolic parameters (glycemia, insulin, cholesterol, triglycerides) were measured. The phosphorylation of a key protein of insulin signaling pathway (protein kinase B, PKB/Akt) was studied by Western blot. The intra-muscular and intra-hepatic lipids were extracted using Chloroform-Methanol (2:1, v/v).The CKD mice exhibited a marked decrease in insulin sensitivity (−76%, p<0.01) and altered glucose tolerance (+24%, p<0.001). CKD mice exhibited a profile of insulin resistance. CKD mice exhibited a significant decrease in white adipose tissue accretion (−57%, p< 0.001) associated with increased muscle (+138%, p<0.05) and liver (+38%, P<0.05) lipid contents compared to sham-operated mice. The CKD mice presented a blunted insulin-induced Akt phosphorylation (−34%, p<0.05) in gastrocnemius muscle.In subtotally nephrectomized mouse model we showed an ectopic intramuscular and intrahepatic lipid redistribution concomitant with insulin resistance. Insulin resistance and lipotoxicity may represent the missing links (beyond the classical cardiovascular risk factors) that may help explain the increased risk of cardiovascular disease in CKD

    Ozone exposure triggers insulin resistance through systemic oxidative stress and muscle endoplasmic reticulum stress : ozone pollution and type 2 diabetes : can you imagine an environmental origin metabolic diseases?

    No full text
    Des études épidémiologiques récentes suggèrent que certains polluants atmosphériques jouent un rôle dans le développement et la progression de l'insulino-résistance, associée au diabète de type 2. L'ozone, un polluant photochimique majeur des zones urbaines, est associé t à des concentrations augmentées de glucose et d'insuline plasmatiques à jeun, cependant de nombreux aspects de cette association restent à élucider. En utilisant une concentration réaliste, représentative des pics de pollution (0,8 ppm), nous avons démontré que l'exposition de rats à de l'ozone induit une insulino-résistance systémique et un stress oxydant, associé à un stress du réticulum endoplasmique (RE), une activation de JNK et donc, une perturbation du signal insulinique dans le muscle. Les lavages broncho-alvéolaires réalisés chez des rats exposés à l'ozone, reproduisent ces effets sur des myotubes C2C12, suggérant que des médiateurs pulmonaires toxiques sont responsables de ce phénotype. Des prétraitements avec le chaperon chimique acide 4-phénylbutyrique, l'inhibiteur de JNK SP600125, ou l'antioxydant N-acétylcystéine préviennent l'insulino-résistance, démontrant que l'ozone induit séquentiellement un stress oxydant, un stress du RE et une activation de JNK, entraînant une perte de la sensibilité à l'insuline dans le muscle. Notre étude est la première à montrer que la pollution à l'ozone provoque le développement de l'insulino-résistance, suggérant qu'elle pourrait accélérer la progression du diabète. Nous proposons ainsi un mécanisme liant exposition à des polluants et augmentation de l'incidence des maladies métaboliquesA growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin concentrations but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 ppm), we demonstrated that exposition of rats to ozone induced whole body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, JNK activation and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pre-treatments with the chemical chaperone 4-phenyl butyric acid, the JNK inhibitor SP600125 or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic disease

    Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice.: Metabolic effects of myo-inositol

    No full text
    International audienceType 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, P<.005) compared with controls. The decrease in white adipose tissue deposition was due to a decrease in adipose cell volume (-33%, P<.05), while no change was noticed in total adipocyte number. In skeletal muscle, in vivo as well as ex vivo myo-inositol treatment increased protein kinase B/Akt phosphorylation under baseline and insulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes

    Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice

    No full text
    International audienceType 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, P<.005) compared with controls. The decrease in white adipose tissue deposition was due to a decrease in adipose cell volume (-33%, P<.05), while no change was noticed in total adipocyte number. In skeletal muscle, in vivo as well as ex vivo myo-inositol treatment increased protein kinase B/Akt phosphorylation under baseline and insulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes

    White adipose tissue overproduces the lipid-mobilizing factor zinc α2-glycoprotein in chronic kidney disease.

    No full text
    International audienceChronic kidney disease (CKD) is frequently associated with protein-energy wasting, a recognized strong predictive factor of mortality. Zinc α2-glycoprotein (ZAG) is a new adipokine involved in body weight control through its lipid-mobilizing activity. Here we tested whether the uremic environment in CKD could alter ZAG production by white adipose tissue and contribute to CKD-associated metabolic disturbances. Compared with normal plasma, uremic plasma induced a significant increase in ZAG synthesis (124%), was associated with a significant increase in basal lipolysis (31%), and significantly blunted lipogenesis (-53%) in 3T3-L1 adipocytes in vitro. In 5/6 nephrectomized rats and mice in vivo, there was a significant decrease in white adipose tissue accretion (-44% and -43%, respectively) and a significantly higher white adipose tissue content of ZAG protein than in sham-operated, pair-fed control animals (498% and 106%, respectively). Subcutaneous white adipose tissue biopsies from patients with end-stage renal disease exhibited a higher content of ZAG (573%) than age-matched controls. Thus, the ZAG content is increased in white adipose tissue from patients or animal models with CKD. Overproduction of ZAG in CKD could be a major contributor to metabolic disturbances associated with CKD

    Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation

    No full text
    International audienceA growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin levels, but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 parts per million), we demonstrated that exposure of rats to ozone induced whole-body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, c-Jun N-terminal kinase (JNK) activation, and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pretreatment with the chemical chaperone 4-phenylbutyric acid, the JNK inhibitor SP600125, or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic diseases

    Quantitative structure-activity relationship for 4-hydroxy-2-alkenal induced cytotoxicity in L6 muscle cells

    No full text
    International audienceLipid peroxidation is one of the most important sources of endogenous toxic metabolites. 4-Hydroxy-2-nonenal (HNE) and 4-hydroxy-2-hexenal (HHE) are produced in several oxidative stress associated diseases from peroxidation of n-6 and n-3 polyunsaturated fatty acids, respectively. Both are able to form covalent adducts with many biomolecules. Particularly, proteins adduction can induce structural and conformational changes and impair biological function, which may be involved in the toxicity of hydroxy-alkenals. The aim of this study was to compare the effect of 4-hydroxy-2-alkenals to several chemically related derivatives in order to clarify the physico-chemical requirement of their toxicity. L6 muscle cells were treated with HHE, HNE and parent derivatives (acetal derivative, trans-alkenals and alkanals). Viability and necrosis were estimated using MTT, LDH and caspase-3 tests. LogLC50 (Lethal Concentration 50) was then tested for correlation with adducts formation (estimated using dinitrophenylhydrazine) and several molecular descriptors in order to establish quantitative structure-toxicity relationship (QSTR) models. The rank of derivatives toxicity, based on LC50 was: hydroxy-alkenals>acetal derivatives approximately 2-alkenals>alkanals and a high correlation was found between logLC50 and protein carbonylation. Moreover, logLC50 was correlated to the electrophilic descriptor LUMO (lowest unoccupied molecular orbital) as well as with electronegativity-related molecular descriptors such as number of oxygen atoms, partial negative surface area (PNSA3) and partial positive surface area (PPSA3). Together, these results point out the important role of the electrophilic structure and adduct formation in hydroxy-alkenals toxicity. Our present study demonstrates that 4-hydroxy-2-alkenals dramatic effects on cell viability are due to covalent adducts formation, particularly Michael adducts. This capacity is related to the electrophilic structure and reactive CC double bond, making it highly accessible for nucleophilic addition. The present study suggests that nucleophilic scavengers might protect cells against electrophile compounds and might be of possible therapeutic value in oxidative stress associated diseases

    Quantitative structure-activity relationship for 4-hydroxy-2-alkenal induced cytotoxicity in L6 muscle cells

    No full text
    International audienceLipid peroxidation is one of the most important sources of endogenous toxic metabolites. 4-Hydroxy-2-nonenal (HNE) and 4-hydroxy-2-hexenal (HHE) are produced in several oxidative stress associated diseases from peroxidation of n-6 and n-3 polyunsaturated fatty acids, respectively. Both are able to form covalent adducts with many biomolecules. Particularly, proteins adduction can induce structural and conformational changes and impair biological function, which may be involved in the toxicity of hydroxy-alkenals. The aim of this study was to compare the effect of 4-hydroxy-2-alkenals to several chemically related derivatives in order to clarify the physico-chemical requirement of their toxicity. L6 muscle cells were treated with HHE, HNE and parent derivatives (acetal derivative, trans-alkenals and alkanals). Viability and necrosis were estimated using MTT, LDH and caspase-3 tests. LogLC50 (Lethal Concentration 50) was then tested for correlation with adducts formation (estimated using dinitrophenylhydrazine) and several molecular descriptors in order to establish quantitative structure-toxicity relationship (QSTR) models. The rank of derivatives toxicity, based on LC50 was: hydroxy-alkenals>acetal derivatives approximately 2-alkenals>alkanals and a high correlation was found between logLC50 and protein carbonylation. Moreover, logLC50 was correlated to the electrophilic descriptor LUMO (lowest unoccupied molecular orbital) as well as with electronegativity-related molecular descriptors such as number of oxygen atoms, partial negative surface area (PNSA3) and partial positive surface area (PPSA3). Together, these results point out the important role of the electrophilic structure and adduct formation in hydroxy-alkenals toxicity. Our present study demonstrates that 4-hydroxy-2-alkenals dramatic effects on cell viability are due to covalent adducts formation, particularly Michael adducts. This capacity is related to the electrophilic structure and reactive CC double bond, making it highly accessible for nucleophilic addition. The present study suggests that nucleophilic scavengers might protect cells against electrophile compounds and might be of possible therapeutic value in oxidative stress associated diseases

    p-Cresyl sulfate promotes insulin resistance associated with CKD.

    No full text
    International audienceThe mechanisms underlying the insulin resistance that frequently accompanies CKD are poorly understood, but the retention of renally excreted compounds may play a role. One such compound is p-cresyl sulfate (PCS), a protein-bound uremic toxin that originates from tyrosine metabolism by intestinal microbes. Here, we sought to determine whether PCS contributes to CKD-associated insulin resistance. Administering PCS to mice with normal kidney function for 4 weeks triggered insulin resistance, loss of fat mass, and ectopic redistribution of lipid in muscle and liver, mimicking features associated with CKD. Mice treated with PCS exhibited altered insulin signaling in skeletal muscle through ERK1/2 activation. In addition, exposing C2C12 myotubes to concentrations of PCS observed in CKD caused insulin resistance through direct activation of ERK1/2. Subtotal nephrectomy led to insulin resistance and dyslipidemia in mice, and treatment with the prebiotic arabino-xylo-oligosaccharide, which reduced serum PCS by decreasing intestinal production of p-cresol, prevented these metabolic derangements. Taken together, these data suggest that PCS contributes to insulin resistance and that targeting PCS may be a therapeutic strategy in CKD
    corecore