79 research outputs found

    Hybrid Wing Body Multi-Bay Test Article Analysis and Assembly Final Report

    Get PDF
    This report summarizes work performed by The Boeing Company, through its Boeing Research & Technology organization located in Huntington Beach, California, under the Environmentally Responsible Aviation (ERA) project. The report documents work performed to structurally analyze and assemble a large-scale Multi-bay Box (MBB) Test Article capable of withstanding bending and internal pressure loadings representative of a Hybrid Wing Body (HWB) aircraft. The work included fabrication of tooling elements for use in the fabrication and assembly of the test article

    Haemodynamic determinants of quality of life in chronic heart failure

    Get PDF
    BACKGROUND: Heart failure patients demonstrate reduced functional capacity, hemodynamic function, and quality of life (QOL) which are associated with high mortality and morbidity rate. The aim of the present study was to assess the relationship between functional capacity, hemodynamic response to exercise and QOL in chronic heart failure. METHODS: A single-centre prospective study recruited 42 chronic heart failure patients (11 females, mean age 60 ± 10 years) with reduced left ventricular ejection fraction (LVEF = 23 ± 7%). All participants completed a maximal graded cardiopulmonary exercise test with non-invasive hemodynamic (bioreactance) monitoring. QOL was assessed using Minnesota Living with Heart Failure Questionnaire. RESULTS: The average value of QOL score was 40 ± 23. There was a significant negative relationship between the QOL and peak O(2) consumption (r = − 0.50, p ≤ 0.01). No significant relationship between the QOL and selected exercise hemodynamic measures was found, including peak exercise cardiac power output (r = 0.15, p = 0.34), cardiac output (r = 0.22, p = 0.15), and mean arterial blood pressure (r = − 0.08, p = 0.60). CONCLUSION: Peak O(2) consumption, but not hemodynamic response to exercise, is a significant determinant of QOL in chronic heart failure patients

    Pathophysiology of exercise intolerance in chronic diseases: the role of diminished cardiac performance in mitochondrial and heart failure patients

    Get PDF
    Objective: Exercise intolerance is a clinical hallmark of chronic conditions. The present study determined pathophysiological mechanisms of exercise intolerance in cardiovascular, neuromuscular, and metabolic disorders. Methods: In a prospective cross-sectional observational study 152 patients (heart failure reduced ejection fraction, n=32; stroke, n=34; mitochondrial disease, n=28; type two diabetes, n=28; and healthy controls, n=30) performed cardiopulmonary exercise testing with metabolic and haemodynamic measurements. Peak exercise O2 consumption and cardiac power output were measures of exercise tolerance and cardiac performance. Results: Exercise tolerance was significantly diminished in patients compared with controls (ie, by 45% stroke, 39% mitochondria disease, and 33% diabetes and heart failure, p<0.05). Cardiac performance was only significantly reduced in heart failure (due to reduced heart rate, stroke volume, and blood pressure) and mitochondrial patients (due reduced stroke volume) compared with controls (ie, by 53% and 26%, p<0.05). Ability of skeletal muscles to extract oxygen (ie, arterial-venous O2 difference) was diminished in mitochondrial, stroke, and diabetes patients (by 24%, 22%, and 18%, p<0.05), but increased by 21% in heart failure (p<0.05) compared with controls. Cardiac output explained 65% and 51% of the variance in peak O2 consumption (p<0.01) in heart failure and mitochondrial patients, whereas arterial-venous O2 difference explained 69% (p<0.01) of variance in peak O2 consumption in diabetes, and 65% and 48% in stroke and mitochondrial patients (p<0.01). Conclusions: Different mechanisms explain exercise intolerance in patients with heart failure, mitochondrial dysfunction, stroke and diabetes. Their better understanding may improve management of patients, their stress tolerance and quality of life

    Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    Get PDF
    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study

    Gender Related Differences in the Clinical Presentation of Hypertrophic Cardiomyopathy-An Analysis from the SILICOFCM Database

    Get PDF
    Background and Objectives: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease that affects approximately 1 in 500 people. Due to an incomplete disease penetrance associated with numerous factors, HCM is not manifested in all carriers of genetic mutation. Although about two-thirds of patients are male, it seems that female gender is associated with more severe disease phenotype and worse prognosis. The objective of this study was to evaluate the gender related differences in HCM presentation. Materials and Methods: This study was conducted as a part of the international multidisciplinary SILICOFCM project. Clinical information, laboratory analyses, electrocardiography, echocardiography, and genetic testing data were collected for 362 HCM patients from four clinical centers (Florence, Newcastle, Novi Sad, and Regensburg). There were 33% female patients, and 67% male patients. Results: Female patients were older than males (64.5 vs. 53.5 years, p < 0.0005). The male predominance was present across all age groups until the age of 70, when gender distribution became comparable. Females had higher number of symptomatic individuals then males (69% vs. 52%, p = 0.003), most frequently complaining of dyspnea (50% vs. 30%), followed by chest pain (30% vs. 17%), fatigue (26% vs. 13%), palpitations (22% vs. 13%), and syncope (13% vs. 8%). The most common rhythm disorder was atrial fibrillation which was present in a similar number of females and males (19% vs. 13%, p = 0.218). Levels of N-terminal pro-brain natriuretic peptide were comparable between the genders (571 vs. 794 ng/L, p = 0.244). Echocardiography showed similar thickness of interventricular septum (18 vs. 16 mm, p = 0.121) and posterolateral wall (13 vs. 12 mm, p = 0.656), however, females had a lower number of systolic anterior motion (8% vs. 16%, p = 0.020) and other mitral valve abnormalities. Conclusions: Female patients are underrepresented but seem to have a more pronounced clinical presentation of HCM. Therefore, establishing gender specific diagnostic criteria for HCM should be considered

    Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy

    Get PDF
    BackgroundHypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease that affects approximately one in 500 people. HCM is a recognized genetic disorder most often caused by mutations involving myosin-binding protein C (MYBPC3) and beta -myosin heavy chain (MYH7) which are responsible for approximately three-quarters of the identified mutations.MethodsAs a part of the international multidisciplinary SILICOFCM project (www.silicofcm.eu) the present study evaluated the association between underlying genetic mutations and clinical phenotype in patients with HCM. Only patients with confirmed single pathogenic mutations in either MYBPC3 or MYH7 genes were included in the study and divided into two groups accordingly. The MYBPC3 group was comprised of 48 patients (76%), while the MYH7 group included 15 patients (24%). Each patient underwent clinical examination and echocardiography.ResultsThe most prevalent symptom in patients with MYBPC3 was dyspnea (44%), whereas in patients with MYH7 it was palpitations (33%). The MYBPC3 group had a significantly higher number of patients with a positive family history of HCM (46% vs. 7%; p=0.014). There was a numerically higher prevalence of atrial fibrillation in the MYH7 group (60% vs. 35%, p=0.085). Laboratory analyses revealed normal levels of creatinine (85.518.3 vs. 81.3 +/- 16.4 mu mol/l; p=0.487) and blood urea nitrogen (10.2 +/- 15.6 vs. 6.9 +/- 3.9 mmol/l; p=0.472) which were similar in both groups. The systolic anterior motion presence was significantly more frequent in patients carrying MYH7 mutation (33% vs. 10%; p=0.025), as well as mitral leaflet abnormalities (40% vs. 19%; p=0.039). Calcifications of mitral annulus were registered only in MYH7 patients (20% vs. 0%; p=0.001). The difference in diastolic function, i.e. E/e ' ratio between the two groups was also noted (MYBPC3 8.8 +/- 3.3, MYH7 13.9 +/- 6.9, p=0.079).Conclusions Major findings of the present study corroborate the notion that MYH7 gene mutation patients are presented with more pronounced disease severity than those with MYBPC3

    A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy

    Get PDF
    Background: Machine learning (ML) and artificial intelligence are emerging as important components of precision medicine that enhance diagnosis and risk stratification. Risk stratification tools for hypertrophic cardiomyopathy (HCM) exist, but they are based on traditional statistical methods. The aim was to develop a novel machine learning risk stratification tool for the prediction of 5-year risk in HCM. The goal was to determine if its predictive accuracy is higher than the accuracy of the state-of-the-art tools. Method: Data from a total of 2302 patients were used. The data were comprised of demographic characteristics, genetic data, clinical investigations, medications, and disease-related events. Four classification models were applied to model the risk level, and their decisions were explained using the SHAP (SHapley Additive exPlanations) method. Unwanted cardiac events were defined as sustained ventricular tachycardia occurrence (VT), heart failure (HF), ICD activation, sudden cardiac death (SCD), cardiac death, and all-cause death. Results: The proposed machine learning approach outperformed the similar existing risk-stratification models for SCD, cardiac death, and all-cause death risk-stratification: it achieved higher AUC by 17%, 9%, and 1%, respectively. The boosted trees achieved the best performing AUC of 0.82. The resulting model most accurately predicts VT, HF, and ICD with AUCs of 0.90, 0.88, and 0.87, respectively. Conclusions: The proposed risk-stratification model demonstrates high accuracy in predicting events in patients with hypertrophic cardiomyopathy. The use of a machine-learning risk stratification model may improve patient management, clinical practice, and outcomes in general
    corecore