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A B S T R A C T   

Background: Machine learning (ML) and artificial intelligence are emerging as important components of precision 
medicine that enhance diagnosis and risk stratification. Risk stratification tools for hypertrophic cardiomyopathy 
(HCM) exist, but they are based on traditional statistical methods. The aim was to develop a novel machine 
learning risk stratification tool for the prediction of 5-year risk in HCM. The goal was to determine if its pre
dictive accuracy is higher than the accuracy of the state-of-the-art tools. 
Method: Data from a total of 2302 patients were used. The data were comprised of demographic characteristics, 
genetic data, clinical investigations, medications, and disease-related events. Four classification models were 
applied to model the risk level, and their decisions were explained using the SHAP (SHapley Additive exPla
nations) method. Unwanted cardiac events were defined as sustained ventricular tachycardia occurrence (VT), 
heart failure (HF), ICD activation, sudden cardiac death (SCD), cardiac death, and all-cause death. 
Results: The proposed machine learning approach outperformed the similar existing risk-stratification models for 
SCD, cardiac death, and all-cause death risk-stratification: it achieved higher AUC by 17%, 9%, and 1%, 
respectively. The boosted trees achieved the best performing AUC of 0.82. The resulting model most accurately 
predicts VT, HF, and ICD with AUCs of 0.90, 0.88, and 0.87, respectively. 
Conclusions: The proposed risk-stratification model demonstrates high accuracy in predicting events in patients 
with hypertrophic cardiomyopathy. The use of a machine-learning risk stratification model may improve patient 
management, clinical practice, and outcomes in general.   

1. Introduction 

Hypertrophic cardiomyopathy (HCM) is the most prevalent disease 
among familial cardiomyopathies, and affects about one in 500 people. 
Most patients with HCM exhibit the “classic” hypercontractile HCM 

phenotype and have a stable course over the years, without evidence of 
heart failure (HF) progression. However, they remain at increased risk of 
life-threatening arrhythmias and sudden cardiac death (SCD) compared 
to the general population [1]. Pharmacological therapy fails to provide 
optimal protection, and high-risk patients generally receive an 
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implantable cardioverter-defibrillator (ICD) [2,3]. In some patients, 
HCM progresses towards progressive left ventricular (LV) dysfunction 
and refractory HF. Although such remodeling can take a long time (>10 
years), it may be more precipitous and lead to death or cardiac trans
plantation even at a young age. Both SCD and HF progression are hard to 
predict based on presenting clinical and genetic features [4]. 

When assessing cardiomyopathy patients, risk stratification should 
be viewed as a dynamic, ongoing process based on the evaluation of 
patients’ clinical and genetic features. With regard to SCD, high-risk 
status has been defined in several ways over the years, based on 
different international guidelines [5]. The most established risk factors 
for SCD in HCM include the family history of SCD, non-sustained ven
tricular tachycardia, abnormal blood pressure response to exercise, se
vere LV hypertrophy, and unexplained syncope [6]. Other variables are 
regarded as potential modifiers of this risk, including LV outflow tract 
obstruction (LVOTO) at rest, apical aneurysms, end-stage progression, 
extensive late gadolinium enhancement by magnetic resonance imag
ing, and complex genotypes [7–9]. Two leading risk stratification 
models currently exist. The model by O’Mahony et al. [10], incorporated 
in the 2014 European Society of Cardiology guidelines, is based on a 
retrospective analysis of a multicenter longitudinal cohort developed 
using the Cox proportional hazards model and validated using the 
bootstrapping method. The authors used a combination of eight factors 
(age, maximal LV wall thickness, left atrial (LA) diameter, LV outflow, 
family history of SCD, NSVT, and unexplained syncope) to predict 
patient-specific probabilities of SCD at five years. Their model and risk 
stratification tool is widely used and also available online. The alter
native method, which is a part of the 2011 American College of Car
diology/American Heart Association guidelines [2,11] is based on 
consideration of individual risk factors, each associated with SCD in 
HCM at logistic regression analysis. Despite these advances, individu
alized prognostication remains challenging in HCM, with low specificity 
and positive predictive accuracy, independent of the score or algorithm 
used. 

Machine learning (ML) has been recently proposed as a useful tool to 
improve management of disease prediction and progression [12]. 
Several ML approaches have been used in cardiology with the aim of 
improving the clinical workflow [13] and overcome the limitations of 
traditional methods. A recent example is a ML-based mortality predic
tion of patients undergoing cardiac resynchronization therapy (CRT) 
[14]. In this study, we develop and evaluate the first HCM risk stratifi
cation tool based on ML algorithms, considering patients’ current clin
ical status, genetic data, imaging data, and medical history in order to 
identify patients at risk of any major adverse cardiac event (MACE) 
(including SCD and HF). To model the risk level (low-risk or high-risk), 
we apply four classification models (random forests, boosted trees, 
support vector machine, and neural networks) and evaluate their per
formance. Novelties and contributions of this paper include: 

• description of the novel risk stratification system HCM-RSS that in
cludes a proposal for the training data representation and perfor
mance evaluation of several supervised machine learning 
algorithms; and the performance of the system is compared to 
existing risk-stratification models for SCD, cardiac death and all- 
cause death risk-stratification,  

• application of the SHAP methodology that explains the reasoning in 
the machine learning models that have the black-box nature and 
provides insight into influencing the parameters for risk 
stratification. 

The paper is structured as follows: Section 2 provides the available 
data and presents its preprocessing, training with supervised machine 
learning, and explanation methodology. Section 3 presents the obtained 
results and compares the proposed approach with the state-of-the-art. 
Sections 4 and 5 conclude the paper. 

2. Methods 

2.1. Retrospective dataset with longitudinal information 

The retrospective data that was used for training the machine 
learning algorithms was provided by the Careggi University Hospital, 
University of Florence, Italy. The used data were a part of a larger 
consortium, the Share Registry, and included longitudinal digital med
ical records from the entire hospital’s medical practice. From all avail
able data, data of 2302 patients (1448 male and 854 female) that were 
primarily diagnosed with HCM or had an HCM-diagnosed relative (in
clusion criterion) were chosen for forming the machine learning dataset. 
The patients’ records included their clinical data, management details, 
and disease-related events. Patients’ demographic, physical, and clinical 
characteristics are given in Table 1. For each patient, the following data 
were collected: demographic and physical characteristics (gender, age, 
weight, and height); genetic data based on next generation sequencing- 
based testing; clinical investigations (echocardiography, electrocardi
ography, Holter monitoring, blood tests, cardiac magnetic resonance, 
and a cardiopulmonary exercise stress test); medication (medication 
type, date when the medication was started and stopped); and disease- 
related events (HF, VT, appropriate ICD intervention, SCD, cardiac 
death, and all-cause death). Since the dataset contains longitudinal 
clinical data from various clinical tests as well as relevant disease related 
events, it was possible to observe how patients’ clinical status changed 
over time and label them as high- and low-risk patients. 

2.2. Forming training data for machine learning 

Due to practical reasons (i.e., the slow progression of the disease), a 
learning example is defined as a set of measurements that have been 
made within a time frame of one year. If the patient had a certain test 
performed multiple times within this time frame, the multiple tests are 
treated as separate measurements (see Fig. 1). If a certain type of test 
was not performed in the one-year time frame, the variables associated 
with that test were recorded as missing. Transforming patients’ data in 
this way yielded a dataset with 13,386 learning examples (3.9 ± 4.8 
examples per patient on average). 

The dataset contains records of disease-related events (in total 4902 
events) that occurred in patients with HCM along with the date of the 
occurrence (events are e.g., SCD, heart failure, and transplant). There 
are 97 different event categories present in the dataset. The main cate
gories are: i) directly related to certain tests (e.g. abnormal Holter is a 
direct result of Holter monitoring test; pre-syncope may or may not be a 
result of stress test), ii) reflect a certain medical procedure (like pace
maker or ICD implantation, etc.); iii) represent patients’ death (due to 
SCD, cardiac death, and all-cause death); and iv) represent what is 
referred to as quasi-death – if a life-saving treatment had not been 
provided, the patient would have died (e.g. heart transplant or ICD 
appropriate shock firing). 

The following events were considered as high-risk events, hence the 
patients with such events were labeled as high-risk patients: abnormal 
Holter, ventricular tachycardia, non-sustained ventricular tachycardia 
(NSVT), sustained ventricular tachycardia (SVT), ventricular tachy
cardia ablation, abnormal exercise tolerance test (ETT), an implanted 
ventricular assist device (VAD), an implanted implantable cardioverter 
defibrillator (ICD), ICD appropriate firing, cardiac arrest, sudden cardiac 
death (SCD), heart failure (HF), the patient being listed for a heart 
transplant, and heart transplant. The risk label for each learning 
example was derived by verifying if any of the high-risk events has 
occurred to the patient in the 5-year time frame since the last mea
surement was taken. Some of the events are recorded only at the time a 
patient visits the clinic. Only those patients were included who had at 
least a 5-year follow-up, or, if the follow-up period was shorter, or they 
experienced at least one high-risk event. 
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2.3. Data preprocessing 

Datasets based on real world clinical practice, such as our dataset of 
2302 patients, have a number of missing values and outliers, which 
represents an obstacle for ML. To facilitate the use of ML methods, we 
imputed the missing values [15,16] by applying the following proced
ures: (i) copying past/known values of the last result (in the range of five 
years) if the longitudinal data point is missing; (ii) adding values of 
healthy controls, i.e. the missing numerical values were replaced by 
random samples from the normal distributions, defined by the mean and 
standard deviation, which accurately describe the range of healthy 
values for a given numerical feature; (iii) resetting to mean values: for 
the numerical variables, where the standard (or healthy control) values 
are not available, the average value of each variable is used to impute its 
missing values. In the case of a categorical variable, the missing values 
are replaced with the most frequent value. Being aware that imputation 
of missing values could introduce data bias [17], we applied imputations 
(i) and (ii) as our first options, i.e., copying values from previous mea
surements of the same patient and using a variant of a multiple impu
tation method to keep the introduced data bias low. The highest data 
bias can thus be introduced with the imputation (iii), which we applied 
sparingly as our last option. 

Furthermore, ML examples are often augmented by transformations 
that do not modify the label of the example, but change the input in a 
way that is realistic, which may improve the performance of the models. 
Generally, an example of such transformations can be, for example, 
translations and the rotations of images. For our dataset, we used the 
following augmentation techniques [18,19]: (i) Interpolation: many 
measurements were taken at non-equidistant time intervals and we used 
the time-based interpolation to compute approximations at regular pe
riodic measurements. Parameter values and the target values between 
the two nearest measurements were linearly interpolated. Categorical 
(ordinal) values, which are represented as integers, were rounded after 
the interpolation; (ii) Adding longitudinal data: we used the available 
patients’ longitudinal data to extend the feature space by combining all 
possible pairs of patient measurements. The risk label of such a longi
tudinal patient record is determined by the label of the latest measure
ments. This procedure significantly increases the number of training 
examples (from initial 3465 to approx. 105); and (iii) Semi-supervised 
learning exploits the fact that we are in possession of many more unla
beled instances than the labeled ones. Using the available labeled ex
amples, we built the prediction model that predicted labels for the 
unlabeled example. The most reliable of such examples were added to 
the training set and helped to improve the predictive model that was 
rebuilt using this expanded dataset. 

For training and evaluation of ML models, all available examples 
were used (i.e., none were discarded due to too many missing values). 
However, for use of HCM-RSS in production environment, some basic 
parameters were selected as mandatory to be provided for learning and 
risk stratification to run (such as gender, age, dates of disease-related 
events etc.). 

2.4. Predictive modeling with supervised machine learning 

To model risk-level of patients, we applied four different ML models 
for supervised learning: (i) Random forests [20,21], which are an 
ensemble prediction model that constructs multiple decision trees 
(implementation in the statistical package R and Python Scikit-Learn 
[22]); (ii) XGBoost library [23], which provides gradient boosting on 
an ensemble of many decision trees; (iii) Support Vector Machines [24] 
classifier, which uses linear or radial basis kernel functions to separate 
the two classes (implementation in R package e1071 was used); and (iv) 
fully-connected feed-forward neural networks, which mimic the work
ing of neurons in brain. The best parameter configuration (hyper pa
rameters) for all used classification models were optimized using the 
Bayesian optimization and random search implemented in keras-tuner 

Table 1 
Patient demographic, physical and clinical characteristics. The upper part of the 
table shows patient overview characteristics and the lower part shows the sta
tistics in terms of baseline and follow-up measurements.  

Patients Total (N = 2302)  

Characteristics no. (%)  

Sex 
Male 1448 (62.9%)  
Female 854 (37.1%)  

Family history of HCM 983 (42.7%)  
Family history of SCD 426 (18.5%)  
Family history of CAD 104 (4.5%)  
Diabetes 82 (3.6%)  
Type 2 diabetes 73 (3.2%)  
Hypertension 214 (9.3%)  
Hypercholesterolemia 478 (20.8%)  
Genetic mutations Total tests performed (N 

= 1321)  
MYBPC3 455 (34.4%)  
MYH7 254 (19.2%)  
MYL2 13 (1.0%)  
MYL3 7 (0.5%)  
TNNI3 42 (3.2%)  
TNNT2 45 (3.4%)  
TPM1 8 (0.6%)  
TTN 3 (0.2%)   

Measurements Baseline (N = 2302) Follow-up (N =
1544) 

Characteristics no. (%) no. (%) 

Age [years] 46 ± 19 54 ± 18 
NYHA class 

I 1245 (54.1%) 750 (48.6%) 
II 700 (30.4%) 552 (35.8%) 
III 222 (9.6%) 208 (13.5%) 
IV 11 (0.5%) 21 (1.4%) 

Body mass index [kg/m2] 25.2 ± 4.3 25.5 ± 3.9 
Systolic blood pressure [mm 

Hg] 
124.4 ± 19.4 122.2 ± 17.9 

Diastolic blood pressure [mm 
Hg] 

74.9 ± 10.2 74.4 ± 21.1 

Left atrium [mm] 41.4 ± 8.8 44.2 ± 8.5 
Left atrium volume [ml] 79.2 ± 39.6 93.2 ± 54.3 
LVIDs 27.9 ± 6.7 29.2 ± 7.7 
LVIDd 45.3 ± 6.7 46.3 ± 6.5 
LVEF 65.1 ± 9.0 62.9 ± 9.5 
Abnormal ETT 2 (0.1%) 27 (1.7%) 
Abnormal holter 102 (4.4%) 351 (22.7%) 
NSVT 106 (4.6%) 347 (22.5%) 
SVT 20 (0.9%) 46 (3.0%) 
Ventricular tachycardia 5 (0.2%) 14 (0.9%) 
Ventricular tachycardia 

ablation 
3 (0.1%) 5 (0.3%) 

Atrial fibrillation 210 (9.1%) 350 (22.7%) 
Atrial fibrillation ablation 22 (1.0%) 47 (3.0%) 
Cardiac arrest 19 (0.8%) 29 (1.9%) 
Heart failure 52 (2.3%) 93 (6.0%) 
ICD implanted 76 (3.3%) 200 (13.0%) 
ICD appropriate firing 9 (0.4%) 28 (1.8%) 
Myectomy 28 (1.2%) 157 (10.2%) 
Stroke 50 (2.2%) 78 (5.1%) 
Pre-syncope 80 (3.5%) 123 (8.0%) 
Syncope 184 (8.0%) 254 (16.5%) 
Listed for heart transplant 0 (0.0%) 1 (0.1%) 
Heart transplant 0 (0.0%) 2 (0.1%) 

HCM - hypertrophic cardiomyopathy, SCD - sudden cardiac death, CAD - coro
nary artery disease, NYHA - New York Heart Association, LVIDS - left ventricular 
internal dimension at end-systole in mm/m2, LVIDd - left ventricular internal 
dimension at end-diastole in mm/m2, LVEF - left ventricular ejection fraction, 
ETT - exercise tolerance test, NSVT - non-sustained ventricular tachycardia, SVT 
- sustained ventricular tachycardia. 
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[25]. The final selected parameters were as follows:  

• Random forest: 1000 trees, entropy as attribute selection criterion, 
maximum depth of a tree 75, the number of considered features 
equal to log2 of the number of available features, bootstrapping not 
used;  

• XGBoost: 1000 gradient-boosted trees, gbtree booster, learning_rate 
0.2, maximum depth 4, subsample ratio of training instances 0.75, 
gamma (minimum loss reduction for partitioning a leaf) 1.5, 

• Support Vector Machines: linear kernel, gamma = 1/(number_
of_attributes), epsilon = 0.1, C = 1, 

• Neural-networks: learning rate 0.002, dropout probability 0.3, reg
ularization strength 0.001, 5 hidden layers, elu activation functions 
in hidden layers, sigmoid activation functions in the output layer, 
200-200-200-20-20 neurons in hidden layers. 

For the remaining parameter values (if any) default values were 
used. 

2.5. Explanation of the predictive model 

Most of the top performing machine learning models are black boxes, 
which means that the prediction-making process is not transparent to 
the user. In risk-sensitive areas such as healthcare, model interpret
ability is of a crucial importance, because users are not only interested in 
good predictive accuracy, but also in understanding the decision process 
– which is what makes the predictions actionable. Explanation methods 
provide information about why a certain prediction was made for a 
patient and which features had the highest impact in making the pre
diction [26]. 

The risk stratification model classifies patients into high-risk or low- 
risk classes, and for each prediction an explanation is generated. An 
explanation consists of a list of the most relevant features that influence 
the prediction, either supporting the predicted class or opposing it. This 
type of explanation for individual patients eases understanding of the 
reasoning process captured by the ML model. Summarizing these ex
planations over the whole dataset provides further insights into the 
model’s behavior and allows for qualitative understanding of the rela
tionship between the patient’s features and the model’s prediction. We 
used a model-agnostic explanation method/library SHAP [27] (SHapley 
Additive exPlanations) that is based on the theoretically well-supported 
concept of Shapley values from cooperative game theory. Since our best 
performing model is a boosted tree, we used a variant of SHAP adapted 
to these models. 

2.6. Statistical methods 

We performed the model evaluation by computing the classification 
accuracy (ratio of correctly classified examples), sensitivity (true posi
tive rate), specificity (true negative rate), precision (positive predictive 
value), F1 score (harmonic mean between precision and sensitivity), and 
AUC for the learned predictive models. We computed all metrics using 

the stratified 10-fold cross-validation procedure, which uses multiple 
data samples to unbiasedly estimate how the model will perform with 
independent data. The ROC (Receiver Operating Characteristic) curve is 
a two-dimensional representation of a classifier performance, which 
depicts the true positive rate given the false positive rate. The area under 
the ROC curve (AUC) gives the probability that the classifier will rank a 
randomly chosen positive example higher than a randomly chosen 
negative example [28]. 

3. Results 

3.1. Performance of predictive models 

The testing performance of the used classification models is shown in 
Table 2. The best results were achieved using the boosted trees, which 
obtained an average accuracy of 0.75, AUC 0.82, and an F1 score of 0.71. 

We further analyzed the performance of boosted trees for each high- 
risk event separately, where the positive class contained only one high- 
risk event, the examples with other high-risk events were excluded, and 
the negative class remained the same. Fig. 2 shows the ROC curves that 
summarize the performance of the risk stratification model for specific 
high-risk events. For reference, the results for prediction of all events, 
performed by the original model and denoted with “All events,” are 
included, as well. Based on the results, we can group the events into 
three categories:  

1. AUC > 0.85: VT, HF, ICD appropriate firing,  
2. 0.76 < AUC < 0.85: abnormal ETT, abnormal holter, NSVT, ICD 

appropriate firing, high risk (all events),  
3. AUC < 0.76: SCD. 

For the first group of events, our model performs better than the joint 
(“All events”) high-risk classifier. The most difficult task is the predic
tion of SCD events in patients without ICD implants. This was expected 
due to the stochastic nature of the SCD events. Several high-risk events 
(cardiac arrest, listed for transplant, transplant, VAD, and VT ablation) 
could not be evaluated with this procedure due to the low number of 
instances in the dataset. 

3.2. Comparison with the state-of-the-art 

Due to the lack of HCM risk stratification approaches, we compare 
the developed model with the most similar available risk stratification 
models that are relevant to HCM patients: (i) use of conventional risk 
factors in clinical practice [2,3], (ii) prediction of SCD [10], (iii) pre
diction of cardiac death (CD), and (iv) prediction of all cause death (AD). 
In the case of the SCD, we compare the performance of our model with 
the state-of-the-art SCD calculator. For the cardiac death and any death, 
we construct risk-factor models based on clinical guidelines. The com
parisons are described below and summarized in Table 3. Additionally, 
ROC curves for all compared models are shown in Fig. 3. Besides the 
improvement with respect to the manual high-risk identification model 

Fig. 1. Construction of a learning example: The graphics shows three learning examples (denoted by pink, green, and blue rounded rectangles) constructed from five 
clinical tests (measurements) all performed within 13 months: ECG (January), Holter (February), CMRI (May), ECG (December), and Holter (January next year – not 
within one year of the first measurement). The clinical tests are combined into examples within the timeframes of one year. 
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(HR), the results show improvements in all specific tasks (SCD, CD, and 
AD). 

3.2.1. Comparison with conventional risk factors 
In clinical practice, the risk score can be constructed by counting 

how many conventional risk factors of SCD, HF, and other high risk 
events are present [2,3]. To apply such an approach on our data, we 
alternatively predicted the risk level by counting such conventional risk 
factors that are available in the given dataset (we denote this approach 
with CONV). Here, the following risk factors were considered as 
high-risk [29]: NYHA class ≥ III, NSVT (defined as ≥ 3 consecutive 
ventricular beats at a rate of >120 beats per minute), interventricular 
(IVSs) or posterior systolic wall thickness (PWTs) > 30 mm, restrictive 
LV filling pattern (diastolic dysfunction grade 3), family history of SCD, 

unexplained syncope, LA diameter ≥ 48 mm, LV ejection fraction 
(LVEF) ≤ 50%, LVOT peak gradient at rest > 30 mmHg, N-terminal 
pro-B-type natriuretic peptide (NT-proBNP) > 900 pg/ml, and atrial 
fibrillation in any form (AF). 

The experiments revealed that the optimal CONV approach on our 
dataset yields the higher accuracy if the threshold of two present risk 
factors is used to classify the patient as a high-risk patient. We used this 
best-performing CONV model to compare its accuracy to the accuracy of 
our model HCM-RSS, the comparison is summarized in Table 3. The 
results show that we can observe an approximately 37% AUC 
improvement of HCM-RSS compared with the model CONV, both 
models having AUCs of 0.82 and 0.60, respectively. 

Table 2 
Performance of the machine learning algorithms on the task of risk stratification of HCM patients. The results of the 10-fold cross-validation for predicting high-risk 
patients five years ahead are shown. The reported values are mean values and standard deviation between cross-validation folds. The best results for each metric are in 
bold.  

Model Accuracy AUC Specificity Sensitivity Precision F1 score 

Random forest 0.72 ± 0.03 0.79 ± 0.03 0.81 ± 0.05 0.62 ± 0.03 0.74 ± 0.05 0.68 ± 0.03 
SVM (linear) 0.69 ± 0.05 0.74 ± 0.04 0.69 ± 0.05 0.69 ± 0.08 0.59 ± 0.08 0.63 ± 0.07 
SVM (RBF) 0.67 ± 0.02 0.73 ± 0.03 0.68 ± 0.03 0.64 ± 0.05 0.62 ± 0.04 0.63 ± 0.04 
Boosted trees 0.75 ± 0.02 0.82 ± 0.02 0.81 ± 0.03 0.67 ± 0.04 0.78 ± 0.02 0.72 ± 0.02 
Neural-Networks 0.74 ± 0.03 0.80 ± 0.04 0.86 ± 0.05 0.61 ± 0.07 0.79 ± 0.05 0.68 ± 0.05 

AUC – Area Under Curve, SVM – support vector machine, RBF – radial basis kernel. 

Fig. 2. ROC curves for classification of specific high-risk events. The left and right panels displays ROC curves for high-risk events that perform better and worse than 
the model for all events, respectively. 
* atrial fibrillation, non-sustained ventricular tachycardia, 2nd or 3rd degree AV-block 
** defined as failure to increase blood pressure (<30 mmHg increase) or presence of fall in blood pressure during effort. 

Table 3 
A comparison of the HCM-RSS with the specific risk-stratification models. Means and standard deviations of metrics are reported. The best results are denoted in bold.  

Model Accuracy AUC Specificity Sensitivity Precision F1 

CONV 0.60 ± 0.001 0.60 ± 0.001 0.57 ± 0.001 0.65 ± 0.01 0.60 ± 0.002 0.62 ± 0.001 
HCM-RSS (CONV) 0.75 ± 0.02 0.82 ± 0.02 0.81 ± 0.03 0.67 ± 0.04 0.78 ± 0.02 0.72 ± 0.02 

SCDcalc1 0.58 ± 0.03 0.58 ± 0.03 0.72 ± 0.05 0.44 ± 0.04 0.62 ± 0.04 0.51 ± 0.01 
SCDcalc2 0.60 ± 0.02 0.60 ± 0.02 0.87 ± 0.04 0.32 ± 0.03 0.72 ± 0.06 0.45 ± 0.01 
HCM-RSS (SCD) 0.66 ± 0.08 0.70 ± 0.1 0.64 ± 0.13 0.69 ± 0.16 0.66 ± 0.07 0.66 ± 0.1 

CD 0.64 ± 0.01 0.64 ± 0.01 0.87 ± 0.01 0.4±1e-10 0.77 ± 0.02 0.65 ± 0.01 
HCM-RSS (CD) 0.60 ± 0.07 0.70 ± 0.12 0.52 ± 0.15 0.69 ± 0.15 0.59 ± 0.06 0.63 ± 0.08 

AD 0.66 ± 0.01 0.70 ± 0.01 0.68 ± 0.02 0.64 ± 0.01 0.67 ± 0.02 0.65 ± 0.01 
HCM-RSS (AD) 0.65 ± 0.09 0.71 ± 0.12 0.64 ± 0.13 0.67 ± 0.15 0.65 ± 0.1 0.65 ± 0.1 

CONV – conventional risk factors, SCD – SCD calculator, CD – cardiac death, AD – all cause death. 
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3.2.2. Comparison with the SCD calculator 
The purpose of the SCD calculator [10] is to estimate the risk of SCD 

in five years for HCM patients, and it returns three risk categories: ICD 
not indicated, ICD maybe indicated, or ICD indicated. The score is 
calculated as 1 − 0.998⋅exp(Prognostic Index), where 

Prognostic Index= 0.15939858 ⋅ max LV wall thickness(mm)

− 0.00294271 ⋅ max LV wall thickness2( mm2)

+0.0259082 ⋅ left atrial diameter(mm)
+0.00446131 ⋅ max LVOT gradient(mmHg)

+0.4583082 ⋅ Family history SCD
+0.82639195 ⋅ NVST

+0.71650361 ⋅ Unexplained syncope
+0.01799934 ⋅ Age (years).

Since SCD is one of the considered high-risk events, we were able to 
compare the performance of the SCD calculator with the performance of 
the HCM-RSS model only by predicting the SCD. To do that, we applied 
the SCD calculator to our database and compared the results with the 
output of our model. Two strategies for assigning a high-risk class to the 
patient were used. In the first (denoted as ‘SCDcalc1’ in Table 3), a high- 
risk class was assigned to patients labeled on the calculator as either ‘ICD 
maybe indicated’ or ‘ICD indicated.’ In the second strategy (denoted as 
‘SCDcalc2’ in Table 3), a high-risk class was only assigned to patients 
labeled with the calculator as ‘ICD indicated.’ The results in Table 3 show 
that only for the SCD task the restricted HCM-RSS model outperforms 
both variants of the SCD calculator (SCDcalc1 and SCDcalc2), all three 

models having AUCs of 0.70, 0.58, and 0.60, respectively. 

3.2.3. Comparison with the cardiac death and all cause death risk- 
stratification models 

Similarly as for the SCD, we can compare our model with the models 
obtained based on the risk factors for cardiac death and all cause death 
(denoted as CD and AD, respectively). Based on the clinical guidelines 
[29], we consider the following risk factors: the NYHA functional class, 
the family history of SCD, syncope, AF, NSVT, maximal LV wall thick
ness, and obstruction (LVOT peak gradient at rest > 30 mmHg). The best 
performing alternative CD model was obtained by considering at least 
two risk factors, and the best alternative AD model was obtained by 
considering at least three or more risk factors. We calculated the per
formance metrics on our dataset in both cases and compared them with 
HCM-RSS that was restricted to predicting only CD or AD outcomes. The 
results show that our model performs on par with the risk-factor baseline 
models, despite being trained on a very different task (see Table 3). 

3.3. Explanation of the risk stratification model 

The visualization of a model explanation consists of a horizontal bar 
chart that is divided into multiple subsections, each pertaining to a 
specific feature. The subsections contain horizontal bars that can extend 
either to the left (negative, red), to the right (positive, green), or both. 
The latter is due to averaging across many learning examples that are 

Fig. 3. Comparison of ROC curves for HCM-RSS (restricted to predicting only a given task) and other existing approaches: model that uses conventional risk factors 
(CONV), SCD calculator (SCD), cardiac death model (CD), and the all cause death (AD) model. 
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situated in different contexts, and so the effect and significance of 
feature values vary. The length of the bars corresponds to the magnitude 
of the impact, i.e. the longer the bar the bigger the impact; the color 
corresponds to the direction of the impact, i.e. green for positive (sup
porting the prediction of the target class), and red for negative (opposing 
it). Each subsection includes a hatched top bar that represents the 
average contribution of a feature, and below it there are the contribu
tions grouped by feature values, i.e. Yes/No for binary features, and 
three discretization intervals for numeric features. 

The visualization of the model explanation for the predicted class 
“high-risk” is shown in Fig. 4. It was obtained by averaging the features’ 
contributions over all test set instances across all 10 folds. The hori
zontal bars denote the features’ impact on the prediction, and they are 
sorted by the absolute sum value of the overall contribution of each 

feature (positive and negative). In this way, the graph allows the user to 
compare the direction of the impact (positive/negative), as well as its 
magnitude for individual feature values. We only visualized the features 
for which the sum of contributions encompasses at least 50% of all 
contributions (filter out of less impactful features). The explanation 
shows that the prediction of the high-risk class is in greatest magnitude 
(the features with the largest impact are highlighted):  

• supported by features values such as:  
1. presence of tricuspid regurgitation,  
2. presence of arrhythmogenic right ventricular cardiomyopathy 

(ARVC),  
3. LA dimension >48.00 mm,  
4. LA volume >89.00 ml, 

Fig. 4. Model explanation for identification of high-risk patients. The feature values that increased the prediction probability of the high-risk class are shown in green 
and those that decreased it are shown in red. On the x-axis, the magnitude of the feature value’s impact is shown and corresponds to the length of the bars, i.e. the 
longer the bar the bigger the impact. The y-axis represents the discretized features and their values that significantly contributed to the prediction of the high-risk 
class. Each feature’s average (positive and negative) impact is shown with hatched bars. 
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5. NYHA class >2;  
• opposed by features values such as:  

1. Age ≤38.76 years,  
2. LA diameter ≤34.83 mm,  
3. LA volume ≤42.21 ml,  
4. family history for HCM,  
5. pacemaker presence,  
6. diabetes presence. 

4. Discussion 

The aim of the study is to explore machine learning methods as a 
potential tool for extracting knowledge from the patients’ data, and 
model the level of HCM risk. Although machine learning has already 
been used in cardiology for mortality prediction, only the traditional 
statistical methods prevail for predicting the risk of HCM. To fill this gap, 
we developed a novel HCM risk stratification model using machine 
learning methods, called ‘HCM-RSS.’ Our developed model considers 
patients’ current clinical status, genetic data, imaging data, and medical 
history in order to identify patients at risk for any major adverse cardiac 
event - MACE (including SCD and HF). To model the risk level (low-risk 
or high-risk), we apply four classification models (random forests, 
boosted trees, support vector machine, and neural networks), and 
evaluate their performance. 

The major findings suggest that the boosted trees model demon
strates high predictive accuracy (accuracy of 75%, AUC 0.82, and F1 
score 0.71). Detailed analysis revealed that it performs best (with AUC 
> 0.85) for predicting ventricular tachycardia, heart failure, and ICD 
triggering/activation. Our further comparison of the HCM-RSS’s per
formance with related risk predictors [29] for HCM (using conventional 
risk factors), SCD [10], cardiac death, and all cause death, revealed the 
favorable performance advantage of the HCM-RSS. In particular, the 
HCM-RSS achieved higher AUC than using conventional risk factory by 
37%, SCD calculator by 17%, the cardiac death model by 9%, and the all 
cause death model by 1%. 

O’Mahony et al. [10], were among the first who proposed a validated 
risk prediction model for SCD in HCM patients. They emphasized that 
the current clinical guidelines for HCM are based on the summation of a 
limited number of binary parameters, denoting if a single type of risk is 
present or not. This can represent a problem, since binary variables can 
provide a more crude approximation of the computed risk compared to 
models that can consider continuous variables. Use of machine learning 
classifiers for HCM-RSS allowed us to overcome this limitation, pre
sumably yielding higher risk predictive accuracy, including for SCD. 
Additionally, Steriotis and Sharma (2015) [6] reported that the major 
SCD risk factors (given 2003 ACC/ESC and 2011 ACCF/AHA Guide
lines), which include unexplained syncope, family history of SCD, severe 
left ventricular hypertrophy, non-sustained VT, and an abnormal blood 
pressure response to exercise have low positive predictive accuracy, as 
the disease is clinically very diverse. As the machine learning predictive 
modeling was able to model non-linear dependencies between patient 
parameters, this study opens doors for determining more complex 
interplay between parameter values when predicting risk. 

When surveying the use of machine learning algorithms (neural 
networks, support vector machines, random forests) in cardiology, 
Cuocolo et al. [13], reported that their accuracy on imaging problems 
ranges from 87.2%–97.8% (AUC ranging from 0.73 to 0.95). Although 
HCM risk stratification is a different domain, it is interesting to see that 
the HCM-RSS reached a comparable AUC of 0.82 of numerical data, of 
which some are also derived from imaging. 

Tsay and Patterson (2018) [12] have highlighted that major limita
tions of machine learning algorithms in the medicine stem from the 
inflated expectations about their ease of implementation. They indicated 
that one the most problematic aspects is the black-box nature of machine 
learning models, which obstructs insight into automatically proposed 
decisions and reasons for the proposed interventions. Since the 

transparency, justifiability, and understanding of the decision process 
are important in risk-sensitive areas such as cardiology, we aimed at 
overcoming this drawback by applying the SHAP-based explanation 
method. The automatically generated visualization extracted and 
revealed several HCM risk factors, which play a decisive role in the 
models’ risk prediction. Some of these factors also confirmed what is 
already known about the HCM, such as positive predictive influences of 
the parameters: the presence of tricuspid regurgitation, the presence of 
arrhythmogenic right ventricular cardiomyopathy (ARVC), LA dimen
sion > 48.00 mm, LA volume > 89.00 ml, and NYHA class > 2. 

4.1. Limitations and further work 

The development of HCM-RSS addressed several machine learning 
challenges [16,18,19] by utilizing a sequence of data preprocessing 
methods (imputing, matching longitudinal records, using unlabeled 
examples, and the transformation to training examples for machine 
learning). Generally, such preprocessing steps are tailored to the data 
that are available at hand, and their choice can determine the resulting 
accuracy of the predictive models. Nevertheless, it would make sense to 
determine the guidelines, how different data transformations work for 
different machine learning problems in cardiology. Likewise, a sensi
tivity study of the results shall be performed to determine how the pa
tient’s record timeframe and predicted risk timeframe influence the 
achieved accuracies. 

Secondly, the study assumed that all data are available prior to uti
lizing machine learning and that the trained model would not change 
over time. It would also make sense to evaluate the accuracy of different 
methods for incremental updates of the model with the new patients’ 
data to determine if and how the risk factors change over time. 

Importantly, although the models were cross-validated on the data 
from the same hospital, the further work shall include validation on 
external data from other hospitals or centers. The challenges with this 
aim lie in the data record format that is not unified across all medical 
institutions, and the availability of the same parameters that were used 
to design the approach in this paper. 

To conclude, the HCM-RSS represents a promising approach to 
improve risk stratification accuracy in hypertrophic cardiomyopathy. In 
future work, we plan to extend this work to developing predictive 
models for disease progression. We hope that the developed approaches 
will provide automated diagnostic reference and early identification of 
high-risk patients, which will open new opportunities for knowledge 
acquisition in clinical cardiology using artificial intelligence 
approaches. 
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