14 research outputs found

    До 75-річчя Анни Станіславівни Русяєвої

    Get PDF
    Цієї зими, 1 лютого 2012 р., виповнилося 75 років від дня народження Анни Станіславівни Русяєвої — визначного вітчизняного антикознавця, відомого вченого-археолога з більш як півстолітнім стажем, провідної дослідниці античних старожитностей Північного Причорномор’я, доктора історичних наук, професора, члена Міжнародної асоціації грецької та латинської епіграфіки, лауреата Всеукраїнської премії ім. М.І. Костомарова (1995), лауреата Державної премії України в галузі науки і техніки (2002), автора більше ніж 250 наукових праць (зокрема 18 книжок) і учасника таких відомих фундаментальних видань, як «Археология Украинской ССР» (1986), «Давня історія України» (1998), «Історія української культури» (2001)

    Nutrient Input and CO<sub>2</sub> Flux of a Tropical Coastal Fluvial System with High Population Density in the Northeast Region of Brazil

    No full text
    International audienceThe carbon dioxide flux through the air-water interface of coastal freshwater ecosystems must be quantified to understand the regional balances of carbon and its transport through coastal and estuarine regions. The variations in air-sea CO 2 fluxes in nearshore ecosystems can be caused by the variable influence of rivers. In the present study, the amount of carbon emitted from a tropical coastal river was estimated using climatological and biogeochemical measurements (2002-2010) obtained from the basin of the Capibaribe River, which is located in the most populous and industrialized area of the northeast region of Brazil. The results showed a mean CO 2 flux of +225 mmol·m −2 ·d −1 , mainly from organic material from the untreated domestic and industrial wastewaters that are released into the river. This organic material increased the dissolved CO 2 concentration in the river waters, leading to a partial pressure of CO 2 in the aquatic environment that reached 31,000 μatm. The months of April, February and December (the dry period) showed the largest monthly means for the variables associated with the carbonate system (3 HCO , DIC, CO 2(aq) , , TA, temperature and pH). This status reflects the state of permanent pollution in the basin of the Capibaribe River, due, in particular, to the discharge of untreated domestic wastewater, which results in the continuous mineralization of organic material. This mineralization significantly increases the dissolved CO 2 content in the estuarine and coastal waters, which is later released to the atmosphere. 2 3 C

    Variability and trends of carbon parameters at a time series in the eastern tropical Atlantic

    No full text
    International audienceHourly fCO2 is recorded at a time series at the PIRATA buoy located at 6°S 10°W in the eastern tropical Atlantic since June 2006. This site is located south and west of the seasonal Atlantic cold tongue and is affected by its propagation from June to September. Using an alkalinityÁsalinity relationship determined for the eastern tropical Atlantic and the observed fCO2 , pH and the inorganic carbon concentration are calculated. The time series is investigated to explore the intraseasonal, seasonal and interannual timescales for these parameters, and to detect any long-term trends. At intraseasonal timescales, fCO2 and pH are strongly correlated. On seasonal timescales, the correlation still holds between fCO2 and pH and their variations are in agreement with those of sea surface salinity. At interannual timescales, some important differences appear in 2011-2012: lower fCO2 and fluxes are observed from September to December 2011 and are explained by higher advection of salty waters at the mooring, in agreement with the wind. In early 2012, the anomaly is still present and associated with lower sea surface temperatures. No significant long-term trend is detected over the period 2006-2013 on CO2 and any other physical parameter. However, as atmospheric fCO2 is increasing over time, the outgassing of CO2 is reduced over the period 2006Á2013 as the flux is mainly controlled by the difference of fCO2 between the ocean and the atmosphere. A longer time series is required to determine if any significant trend exists in this region

    Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast

    Get PDF
    International audienceTropical Atlantic (TA) Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian (NEB) coast were investigated for the years 1974–2008. The core rainy seasons of March-April and June-July were identified for Fortaleza (northern NEB; NNEB) and Recife (eastern NEB; ENEB), respectively. Lagged linear regressions between sea surface temperature (SST) and pseudo wind stress (PWS) anomalies over the entire TA and strong rainfall anomalies at Fortaleza and Recife show that the rainfall variability of these regions is differentially influenced by the dynamics of the TA. When the Intertropical Convergence Zone is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode increases humidity and precipitation during the rainy season. Additionally, this study shows predictive effect of SST, meridional PWS, and barrier layer thickness, in the Northwestern equatorial Atlantic, on the NNEB rainfall. The dynamical influence of the TA on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST from the southeastern TA to the southwestern Atlantic warm pool (SAWP) offshore of Brazil. Our results also show predictive effect of SST, zonal PWS, and mixed layer depth, in the SAWP, on the ENEB rainfall

    Basin‐Scale Estimate of the Sea‐Air CO<sub>2</sub> Flux During the 2010 Warm Event in the Tropical North Atlantic

    No full text
    Following the anomalous warming event occurring in the tropical North Atlantic in 2010, higher than usual surface fugacity of CO2 (fCO2) was observed. To evaluate the spatial extent of these anomalies and their drivers, and to quantify the sea-air CO2 flux at basin scale, the Mercator-Ocean model is used from 2006 to 2014 within the region 0-30°N, 70-15°W. Model outputs are generally in accordance with underway sea surface temperature, sea surface salinity, and surface fCO2 recorded by two merchant ships. The anomalous warming of 2010 is well reproduced by the model and is the main driver of fCO2 anomalies. The first coupled Empirical Orthogonal Function mode, between sea surface temperature and fCO2 , captures more than 70% of the total variance and is characterized by a basin-scale warming associated to positive fCO2 anomalies. The corresponding principal components are correlated to the Tropical North Atlantic Index and identify 2010 as the year with the highest positive anomaly over 2006-2014. Exceptions to this general pattern are located near the African coast, where the weakening of the coastal upwelling causes negative inorganic carbon anomalies, and close to the Amazon River plume, where fCO2 anomalies are primarily associated with sea surface salinity anomalies. Although the fCO2 anomalies of 2010 appear mostly in spring, they affect the annual CO2 budget and lead to an increased CO2 outgassing twice as large (46.2 Tg C per year) as the mean annual flux over the 2006-2014 period (23.3 Tg C per year)

    Amazon Plume Salinity Response to Ocean Teleconnections

    No full text
    International audiencePacific and Atlantic sea surface temperature (SST) variability strongly influences rainfall changes in the Amazon River basin, which impacts on the river discharge and consequently the sea surface salinity (SSS) in the Amazon plume. An Empirical Orthogonal Function (EOF) analysis was performed using 46 years of SST, rainfall, and SSS datasets, in order to establish the relationship between these variables. The first three modes of SST/rainfall explained 87.83% of the total covariance. Pacific and Atlantic SSTs led Amazon basin rainfall events by 4 months. The resultant SSS in the western tropical North Atlantic (WTNA) lagged behind basin rainfall by 3 months, with 75.04% of the total covariance corresponding to the first four EOF modes. The first EOF mode indicated a strong SSS pattern along the coast that was connected to negative rainfall anomalies covering the Amazon basin, linked to El Niño events. A second pattern also presented positive SSS anomalies, when the rainfall was predominantly over the northwestern part of the Amazon basin, with low rainfall around the Amazon River mouth. The pattern with negative SSS anomalies in the WTNA was associated with the fourth mode, when positive rainfall anomalies were concentrated in the northwest part of South America. The spatial rainfall structure of this fourth mode was associated with the spatial rainfall distribution found in the third EOF mode of SST vs. rainfall, which was a response to La Niña Modoki events. A statistical analysis for the 46 year period and monthly anomaly composites for 2008 and 2009 indicated that La Niña Modoki events can be used for the prediction of low SSS patterns in the WNTA

    Zooplankton From a Reef System Under the Influence of the Amazon River Plume

    No full text
    At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km2) that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species), most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (&gt;3.0 bits.ind-1) and evenness (&gt;0.6) were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m-3 over the reef area to 2,609.24 ind. m-3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura, an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1) indicative of coastal waters under the influence of the estuarine plume [Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria) dioica and Hydromedusae]; (2) characterized coastal and oceanic conditions (Clausocalanus); (3) characterized the reef system (O. plumifera). Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine plume and are mixed with species of the North Brazil Current. These species practically disappear offshore, where occur oceanic species commonly found in other oligotrophic tropical areas. This ecosystem shows a mixture of estuarine, coastal and oceanic communities coexisting in the waters over the Amazon reefs, with no significant differences among these areas. However, the MDS clearly separated the communities along the salinity gradient in the plume
    corecore