132 research outputs found
Intracellular Triggering of Fas Aggregation and Recruitment of Apoptotic Molecules into Fas-enriched Rafts in Selective Tumor Cell Apoptosis
We have discovered a new and specific cell-killing mechanism mediated by the selective uptake of the antitumor drug 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3, Edelfosine) into lipid rafts of tumor cells, followed by its coaggregation with Fas death receptor (also known as APO-1 or CD95) and recruitment of apoptotic molecules into Fas-enriched rafts. Drug sensitivity was dependent on drug uptake and Fas expression, regardless of the presence of other major death receptors, such as tumor necrosis factor (TNF) receptor 1 or TNF-related apoptosis-inducing ligand R2/DR5 in the target cell. Drug microinjection experiments in Fas-deficient and Fas-transfected cells unable to incorporate exogenous ET-18-OCH3 demonstrated that Fas was intracellularly activated. Partial deletion of the Fas intracellular domain prevented apoptosis. Unlike normal lymphocytes, leukemic T cells incorporated ET-18-OCH3 into rafts coaggregating with Fas and underwent apoptosis. Fas-associated death domain protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid were recruited into rafts, linking Fas and mitochondrial signaling routes. Clustering of rafts was necessary but not sufficient for ET-18-OCH3–mediated cell death, with Fas being required as the apoptosis trigger. ET-18-OCH3–mediated apoptosis did not require sphingomyelinase activation. Normal cells, including human and rat hepatocytes, did not incorporate ET-18-OCH3 and were spared. This mechanism represents the first selective activation of Fas in tumor cells. Our data set a framework for the development of more targeted therapies leading to intracellular Fas activation and recruitment of downstream signaling molecules into Fas-enriched rafts
Release of Major Peanut Allergens from Their Matrix under Various pH and Simulated Saliva Conditions—Ara h2 and Ara h6 Are Readily Bio-Accessible
The oral mucosa is the first immune tissue that encounters allergens upon ingestion of food. We hypothesized that the bio-accessibility of allergens at this stage may be a key determinant for sensitization. Light roasted peanut flour was suspended at various pH in buffers mimicking saliva. Protein concentrations and allergens profiles were determined in the supernatants. Peanut protein solubility was poor in the pH range between 3 and 6, while at a low pH (1.5) and at moderately high pHs (\u3e8), it increased. In the pH range of saliva, between 6.5 and 8.5, the allergens Ara h2 and Ara h6 were readily released, whereas Ara h1 and Ara h3 were poorly released. Increasing the pH from 6.5 to 8.5 slightly increased the release of Ara h1 and Ara h3, but the recovery remained low (approximately 20%) compared to that of Ara h2 and Ara h6 (approximately 100% and 65%, respectively). This remarkable difference in the extraction kinetics suggests that Ara h2 and Ara h6 are the first allergens an individual is exposed to upon ingestion of peanut-containing food. We conclude that the peanut allergens Ara h2 and Ara h6 are quickly bio-accessible in the mouth, potentially explaining their extraordinary allergenicity
Identification of Pharmacodynamic Transcript Biomarkers in Response to FGFR Inhibition by AZD4547
The challenge of developing effective pharmacodynamic biomarkers for preclinical and clinical testing of FGFR signaling inhibition is significant. Assays that rely on the measurement of phospho-protein epitopes can be limited by the availability of effective antibody detection reagents. Transcript profiling enables accurate quantification of many biomarkers and provides a broader representation of pathway modulation. To identify dynamic transcript biomarkers of FGFR signaling inhibition by AZD4547, a potent inhibitor of FGF receptors 1, 2, and 3, a gene expression profiling study was performed in FGFR2-amplified, drug-sensitive tumor cell lines. Consistent with known signaling pathways activated by FGFR, we identified transcript biomarkers downstream of the RAS-MAPK and PI3K/AKT pathways. Using different tumor cell lines in vitro and xenografts in vivo, we confirmed that some of these transcript biomarkers (DUSP6, ETV5, YPEL2) were modulated downstream of oncogenic FGFR1, 2, 3, whereas others showed selective modulation only by FGFR2 signaling (EGR1). These transcripts showed consistent time-dependent modulation, corresponding to the plasma exposure of AZD4547 and inhibition of phosphorylation of the downstream signaling molecules FRS2 or ERK. Combination of FGFR and AKT inhibition in an FGFR2-mutated endometrial cancer xenograft model enhanced modulation of transcript biomarkers from the PI3K/AKT pathway and tumor growth inhibition. These biomarkers were detected on the clinically validated nanoString platform. Taken together, these data identified novel dynamic transcript biomarkers of FGFR inhibition that were validated in a number of in vivo models, and which are more robustly modulated by FGFR inhibition than some conventional downstream signaling protein biomarkers
Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group
Objectives To prospectively assess the diagnostic performance of simple ultrasound rules to predict benignity/malignancy in an adnexal mass and to test the performance of the risk of malignancy index, two logistic regression models, and subjective assessment of ultrasonic findings by an experienced ultrasound examiner in adnexal masses for which the simple rules yield an inconclusive result
Distinct cardiotoxic effects by venoms of a spitting cobra (Naja pallida) and a rattlesnake (Crotalus atrox) revealed using an ex vivo Langendorff heart model
Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity
- …