13 research outputs found

    Protein and energy requirements for maintenance and growth in juvenile meagre Argyrosomus regius (Asso,1801) (Sciaenidae)

    Full text link
    [EN] The meagre is a fish species of recent interest in aquaculture, because of its fast growth and flesh quality. Nevertheless, it hasn't been studied enough, and feed producers do not have enough information about the nutrient requirements to optimize the feed diets of the meagre. This study measures the growth response of this fish to several amounts of food and gives information about the proportion of protein and energy that should be included in its diet, as well as the recommended amount of food to optimize its growth. The meagre is a carnivorous species and might be a suitable candidate species for the diversification of aquaculture in the Mediterranean region. This is based on its high growth and flesh quality. Nevertheless, there is little information available about its growth rates and nutrient requirements. The objective of this study was to determine the protein and energy requirements of juvenile meagre (Argyrosomus regius). Two trials for different weights of 53 and 188 g were conducted with rations from starvation to apparent satiation with the scope of studying its nutritional needs. In the first trial, the initial mean body weight of the fish was 53 g, and they were fed at feeding rates, measured as a percentage of the body weight, of 0, 0.75, 1.5, 2.5, 3.5, and 4.5%, with two replicates per treatment. In a second trial, another group with approximately 188 g of initial body weight was fed at feeding rates of 0, 0.5, 1.5, and 2.5%, with two replicates per treatment. The optimum thermal growth coefficient was obtained with a feed intake of 2.2% day(-1) in trial A and 1.73% day(-1) in trial B. The digestible protein (DP) intake for maintenance was determined as 0.57 g kg(-0.7) day(-1), the DP intake for maximum growth was 6.0 g kg(-0.7) day(-1), and the point for maximum efficiency in protein retention was 1.8 g kg(-0.7) day(-1). The requirement for digestible energy (DE) intake for maintenance was recorded at 25.4 kJ kg(-0.82) day(-1), the DE intake to maximize growth was 365 kJ kg(-0.82) day(-1), and the point for maximum efficiency in energy retention occurs with a digestible energy intake of 93 kJ kg(-0.82) day(-1). The requirements and retention efficiency of protein and energy in Argyrosomus regius tend to be within the range other fish species. The maintenance needs are in agreement with species with low voluntary activity and growth requirements in agreement with fast-growth species.This research was funded by grants from the Planes Nacionales de Acuicultura (JACUMAR) in Spain.Jauralde García, I.; Velazco-Vargas, J.; Tomas-Vidal, A.; Jover Cerda, M.; Martínez-Llorens, S. (2021). Protein and energy requirements for maintenance and growth in juvenile meagre Argyrosomus regius (Asso,1801) (Sciaenidae). Animals. 11(1):1-15. https://doi.org/10.3390/ani11010077S115111Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I., & Mylonas, C. C. (2010). Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture, 307(1-2), 65-70. doi:10.1016/j.aquaculture.2010.07.002EL-Shebly, A. A., El-Kady, M. A. H., Hussin, A. B., & Hossain, M. Y. (2007). Preliminary Observations on the Pond Culture of Meagre, Argyrosomus regius (Asso, 1801) (Sciaenidae) in Egypt. Journal of Fisheries and Aquatic Science, 2(5), 345-352. doi:10.3923/jfas.2007.345.352ESTÉVEZ, A., TREVIÑO, L., KOTZAMANIS, Y., KARACOSTAS, I., TORT, L., & GISBERT, E. (2010). Effects of different levels of plant proteins on the ongrowing of meagre (Argyrosomus regius) juveniles at low temperatures. Aquaculture Nutrition, 17(2), e572-e582. doi:10.1111/j.1365-2095.2010.00798.xPoli, B. M., Parisi, G., Zampacavallo, G., Iurzan, F., Mecatti, M., Lupi, P., & Bonelli, A. (2003). Aquaculture International, 11(3), 301-311. doi:10.1023/a:1024840804303Roo, J., Hernández-Cruz, C. M., Borrero, C., Schuchardt, D., & Fernández-Palacios, H. (2010). Effect of larval density and feeding sequence on meagre (Argyrosomus regius; Asso, 1801) larval rearing. Aquaculture, 302(1-2), 82-88. doi:10.1016/j.aquaculture.2010.02.015Chatzifotis, S., Panagiotidou, M., & Divanach, P. (2011). Effect of protein and lipid dietary levels on the growth of juvenile meagre (Argyrosomus regius). Aquaculture International, 20(1), 91-98. doi:10.1007/s10499-011-9443-yAlvarez-González, C. ., Civera-Cerecedo, R., Ortiz-Galindo, J. ., Dumas, S., Moreno-Legorreta, M., & Grayeb-Del Alamo, T. (2001). Effect of dietary protein level on growth and body composition of juvenile spotted sand bass, Paralabrax maculatofasciatus, fed practical diets. Aquaculture, 194(1-2), 151-159. doi:10.1016/s0044-8486(00)00512-3Chong, A. S. ., Ishak, S. D., Osman, Z., & Hashim, R. (2004). Effect of dietary protein level on the reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquaculture, 234(1-4), 381-392. doi:10.1016/j.aquaculture.2003.12.003El-Sayed, A.-F. M., & Kawanna, M. (2008). Effects of dietary protein and energy levels on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock in a recycling system. Aquaculture, 280(1-4), 179-184. doi:10.1016/j.aquaculture.2008.04.030Lee, S.-M., Jeon, I. G., & Lee, J. Y. (2002). Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture, 211(1-4), 227-239. doi:10.1016/s0044-8486(01)00880-8Zhang, J., Zhou, F., Wang, L., Shao, Q., Xu, Z., & Xu, J. (2010). Dietary Protein Requirement of Juvenile Black Sea Bream, Sparus macrocephalus. Journal of the World Aquaculture Society, 41, 151-164. doi:10.1111/j.1749-7345.2010.00356.xTibbetts, S. M., Lall, S. P., & Anderson, D. M. (2000). Dietary protein requirement of juvenile American eel (Anguilla rostrata) fed practical diets. Aquaculture, 186(1-2), 145-155. doi:10.1016/s0044-8486(99)00363-4Kaushik, S. J., & Seiliez, I. (2010). Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquaculture Research, 41(3), 322-332. doi:10.1111/j.1365-2109.2009.02174.xGunasekera, R. M., De Silva, S. S., Collins, R. A., Gooley, G., & Ingram, B. A. (2000). Effect of dietary protein level on growth and food utilization in juvenile Murray codMaccullochella peelii peelii(Mitchell). Aquaculture Research, 31(2), 181-187. doi:10.1046/j.1365-2109.2000.00417.xBooth, M. A., Allan, G. L., & Pirozzi, I. (2010). Estimation of digestible protein and energy requirements of yellowtail kingfish Seriola lalandi using a factorial approach. Aquaculture, 307(3-4), 247-259. doi:10.1016/j.aquaculture.2010.07.019Jauralde, I., Martínez-Llorens, S., Tomás, A., & Jover, M. (2016). Protein deposition and energy recovery in gilthead sea bream (Sparus aurata): Evaluation of nutritional requirements. Aquaculture, 464, 65-73. doi:10.1016/j.aquaculture.2016.06.006Lupatsch, I., Kissil, G. W., Sklan, D., & Pfeffer, E. (1998). Energy and protein requirements for maintenance and growth in gilthead seabream (Sparus aurata L.). Aquaculture Nutrition, 4(3), 165-173. doi:10.1046/j.1365-2095.1998.00065.xLupatsch, Kissil, Sklan, & Pfeffer. (2001). Effects of varying dietary protein and energy supply on growth, body composition and protein utilization in gilthead seabream (Sparus aurataL.). Aquaculture Nutrition, 7(2), 71-80. doi:10.1046/j.1365-2095.2001.00150.xPeres, H., & Oliva-Teles, A. (2005). Protein and Energy Metabolism of European Seabass (Dicentrarchus labrax) Juveniles and Estimation of Maintenance Requirements. Fish Physiology and Biochemistry, 31(1), 23-31. doi:10.1007/s10695-005-4586-2Lupatsch, I., & Kissil, G. W. (2005). Feed formulations based on energy and protein demands in white grouper (Epinephelus aeneus). Aquaculture, 248(1-4), 83-95. doi:10.1016/j.aquaculture.2005.03.004Pirozzi, I., Booth, M. A., & Allan, G. L. (2008). Protein and energy utilization and the requirements for maintenance in juvenile mulloway (Argyrosomus japonicus). Fish Physiology and Biochemistry, 36(1), 109-121. doi:10.1007/s10695-008-9296-0McGoogan, B. B., & Gatlin, D. M. (1998). Metabolic Requirements of Red Drum, Sciaenops ocellatus, for Protein and Energy Based on Weight Gain and Body Composition. The Journal of Nutrition, 128(1), 123-129. doi:10.1093/jn/128.1.123GLENCROSS, B. D. (2009). Reduced water oxygen levels affect maximal feed intake, but not protein or energy utilization efficiency of rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 15(1), 1-8. doi:10.1111/j.1365-2095.2007.00562.xGlencross, B., Hawkins, W., Evans, D., Rutherford, N., Dods, K., McCafferty, P., & Sipsas, S. (2007). Evaluation of the influence of drying process on the nutritional value of lupin protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture, 265(1-4), 218-229. doi:10.1016/j.aquaculture.2007.01.040Rodehutscord, M., & Pfeffer, E. (1999). Maintenance requirement for digestible energy and efficiency of utilisation of digestible energy for retention in rainbow trout, Oncorhynchus mykiss. Aquaculture, 179(1-4), 95-107. doi:10.1016/s0044-8486(99)00155-6Booth, M. A., & Allan, G. L. (2003). Utilization of digestible nitrogen and energy from four agricultural ingredients by juvenile silver perch Bidyanus bidyanus. Aquaculture Nutrition, 9(5), 317-326. doi:10.1046/j.1365-2095.2003.00259.xHatlen, B., Helland, S. J., & Grisdale-Helland, B. (2007). Energy and nitrogen partitioning in 250 g Atlantic cod (Gadus morhua L.) given graded levels of feed with different protein and lipid content. Aquaculture, 270(1-4), 167-177. doi:10.1016/j.aquaculture.2007.04.001GLENCROSS, B. D. (2008). A factorial growth and feed utilization model for barramundi,Lates calcariferbased on Australian production conditions. Aquaculture Nutrition, 14(4), 360-373. doi:10.1111/j.1365-2095.2007.00543.xHelland, S. J., Hatlen, B., & Grisdale-Helland, B. (2010). Energy, protein and amino acid requirements for maintenance and efficiency of utilization for growth of Atlantic salmon post-smolts determined using increasing ration levels. Aquaculture, 305(1-4), 150-158. doi:10.1016/j.aquaculture.2010.04.013Fournier, V., Gouillou-Coustans, M. F., Métailler, R., Vachot, C., Guedes, M. J., Tulli, F., … Kaushik, S. J. (2002). Protein and arginine requirements for maintenance and nitrogen gain in four teleosts. British Journal of Nutrition, 87(5), 459-469. doi:10.1079/bjn2002564Bureau, D. P., Hua, K., & Cho, C. Y. (2006). Effect of feeding level on growth and nutrient deposition in rainbow trout (Oncorhynchus mykiss Walbaum) growing from 150 to 600 g. Aquaculture Research, 37(11), 1090-1098. doi:10.1111/j.1365-2109.2006.01532.xAtkinson, J. L., Hilton, J. W., & Slinger, S. J. (1984). Evaluation of Acid-Insoluble Ash as an Indicator of Feed Digestibility in Rainbow Trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences, 41(9), 1384-1386. doi:10.1139/f84-170Watanabe, K., Ura, K., Yada, T., Kiron, V., Satoh, S., & Watanabe, T. (2000). Energy and protein requirements of yellowtail for maximum growth and maintenance of body weight. Fisheries Science, 66(6), 1053-1061. doi:10.1046/j.1444-2906.2000.00168.xDumas, A., France, J., & Bureau, D. P. (2007). Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture, 267(1-4), 139-146. doi:10.1016/j.aquaculture.2007.01.041Jauralde, I., Martínez-Llorens, S., Tomás, A., Ballestrazzi, R., & Jover, M. (2011). A proposal for modelling the thermal-unit growth coefficient and feed conversion ratio as functions of feeding rate for gilthead sea bream (Sparus aurata,L.) in summer conditions. Aquaculture Research, 44(2), 242-253. doi:10.1111/j.1365-2109.2011.03027.xMayer, P., Estruch, V. D., & Jover, M. (2012). A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture, 358-359, 6-13. doi:10.1016/j.aquaculture.2012.06.016Panettieri, V., Chatzifotis, S., Messina, C. M., Olivotto, I., Manuguerra, S., Randazzo, B., … Piccolo, G. (2020). Honey Bee Pollen in Meagre (Argyrosomus regius) Juvenile Diets: Effects on Growth, Diet Digestibility, Intestinal Traits, and Biochemical Markers Related to Health and Stress. Animals, 10(2), 231. doi:10.3390/ani10020231Knibb, W. (2000). Genetic improvement of marine fish - which method for industry? Aquaculture Research, 31(1), 11-23. doi:10.1046/j.1365-2109.2000.00393.xWatanabe, K., Hara, Y., Ura, K., Yada, T., Kiron, V., Satoh, S., & Watanabe, T. (2000). Energy and protein requirements for maximum growth and maintenance of bodyweight of yellowtail. Fisheries Science, 66(5), 884-893. doi:10.1046/j.1444-2906.2000.00143.xLupatsch, I., Kissil, G. W., & Sklan, D. (2001). Optimization of feeding regimes for European sea bass Dicentrarchus labrax: a factorial approach. Aquaculture, 202(3-4), 289-302. doi:10.1016/s0044-8486(01)00779-7Arshad Hossain, M., Almatar, S. M., & James, C. M. (2010). Optimum Dietary Protein Level for Juvenile Silver Pomfret, Pampus argenteus (Euphrasen). Journal of the World Aquaculture Society, 41(5), 710-720. doi:10.1111/j.1749-7345.2010.00413.xSandberg, F. B., Emmans, G. C., & Kyriazakis, I. (2005). Partitioning of limiting protein and energy in the growing pig: testing quantitative rules against experimental data. British Journal of Nutrition, 93(2), 213-224. doi:10.1079/bjn20041322Sánchez-Lozano, N. B., Martínez-Llorens, S., Tomás-Vidal, A., & Cerdá, M. J. (2009). Effect of high-level fish meal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata, L.). Aquaculture, 298(1-2), 83-89. doi:10.1016/j.aquaculture.2009.09.028SÁNCHEZ-LOZANO, N. B., MARTÍNEZ-LLORENS, S., TOMÁS-VIDAL, A., & JOVER CERDÁ, M. (2010). Amino acid retention of gilthead sea bream (Sparus aurata, L.) fed with pea protein concentrate. Aquaculture Nutrition, 17(2), e604-e614. doi:10.1111/j.1365-2095.2010.00803.xHillestad, M., & Johnsen, F. (1994). High-energy/low-protein diets for Atlantic salmon: effects on growth, nutrient retention and slaughter quality. Aquaculture, 124(1-4), 109-116. doi:10.1016/0044-8486(94)90366-2Shearer, K. D. (1994). Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture, 119(1), 63-88. doi:10.1016/0044-8486(94)90444-

    NMR-Mpar: A Fault-Tolerance Approach for Multi-Core and Many-Core Processors

    No full text
    International audienceMulti-core and many-core processors are a promising solution to achieve high performance 6 by maintaining a lower power consumption. However, the degree of miniaturisation make 7 them more sensitive to soft-errors. To improve the system reliability, this work proposes a 8 fault-tolerance approach based on redundancy and partitioning principles called NMR-MPar: 9 N-Modular Redundancy and M-Partitions. By combining both principles, this approach allows 10 multi/many-core processors to perform critical functions in mixed-criticality systems. Benefiting of 11 the capabilities of these devices, NMR-MPar creates different partitions that perform independent 12 functions. For critical functions, it is proposed that N partitions with the same configuration 13 participate of a N-Modular Redundancy system. In order to validate the approach, a case study 14 is implemented on the KALRAY MPPA-256 many-core processor running two parallel benchmark 15 applications. Traveling Salesman Problem and Matrix Multiplication applications were selected to test 16 different device’s resources. The effectiveness of NMR-MPar is assessed by Software Implemented 17 Fault-Injection. For evaluation purposes, it is considered that the system is intended to be used in 18 avionics. Results show the improvement of the application reliability in two orders of magnitude 19 when implementing NMR-MPar on the system. Finally, ththis work opens the possibility to use 20 massive parallelism for dependable applications in embedded systems

    Evaluating SEU fault-injection on parallel applications implemented on multicore processors

    No full text
    International audienceThe widespread use of multicore processors in computing systems and the imperative necessity of exploiting massive parallelism to improve performance and dependability, make mandatory to evaluate the impact of SEUs on parallel applications running on multicore processors. This paper presents a method and preliminary results of SEU fault-injection campaigns performed on parallel applications implemented on a quad-core processor. Two representative benchmarks applications were considered for the analysis

    Preliminary results of SEU Fault Injection on Multicore processors in AMP mode

    No full text
    International audienceThe current technological challenge for computing systems is to use multicore processors in order to ensure reliability, improve performance, and reduce power consumption. This paper presents a method and preliminary results of SEU fault-injection campaigns performed on multicore systems in asymmetric multi-processing mode. The target used for this purpose was a Quad-core processor. This work aims at validating the efficiency of TMR fault-tolerance method and to show the weakest variables of a given application running over multicore systems

    Hibridación natural entre Pinus oocarpa y P. pringeli

    Get PDF
    Natural hybridization between Pinus oocarpa Schiede ex Schlechtendal and P. pringlei Shaw was detected in a sample of 30 individual trees living in simpatry including putative hybrid trees. The area of hybridization is located near Ario de Rosales, Michoacán, México. The canonical discriminant analysis used in the study included a total of 19 morphological and anatomical leaf, cone and seed traits. Trees initially characterized as putative hybrids had intermediate values between parental species for most traits. The number of leaves per fascicle, rows of stomata on the dorsal surface, internal and septal resin canals, peduncle length and cone diameter contributed the most to the canonical discriminant functions and to the separation of the parental species and putative hybrid trees. A second discriminant analysis was performed on samples from 10 trees of P. oocarpa and 7 trees of P. pringlei collected from pure stands outside the area of sympatry and on the data from the 30 trees sampled throughout the sympatric area. In a graphic analysis, trees of every species separated into opposite groups. Furthermore, trees from pure stands were positioned toward the extremes of these groups, indicating a possible process of introgression within the population where hybridization was believed to occur.Se determinó la existencia de hibridación natural entre P. oocarpa Schiede ex Schlechtendal y P. pringlei Shaw analizando una muestra de 30 árboles que habitan naturalmente en simpatría y que incluyó individuos catalogados como híbridos putativos. El área de hibridación se localiza en el municipio de Ario de Rosales, Michoacán. Se utilizó un análisis discriminante de variables canónicas con 19 características morfológicas y anatómicas de acículas, conos y semillas. Los árboles inicialmente catalogados como híbridos putativos resultaron con valores intermedios en la mayoría de las características estudiadas. De éstas las que mayormente contribuyeron en las funciones de discriminación canónica y en la separación de las especies progenitoras de los árboles híbridos en estudio, resultaron ser el número de acículas por fascículo, el de hileras de estomas en la cara dorsal, el de canales resiníferos internos y septales, así como la longitud del pedúnculo y el diámetro del cono. Un segundo análisis discriminante fue realizado con muestras de diez árboles de P. oocarpa y siete de P. pringlei de rodales puros habitando alopátricamente y los de los 30 árboles del rodal en simpatría. El análisis gráfico indicó que los árboles de cada especie se aglomeraron opuestamente unos de otros, aunque los individuos de los rodales puros lo hicieron ligeramente hacia los extremos, lo que puede indicar un posible proceso de infiltración genética en el área de hibridación en estudio

    Hibridación natural entre Pinus oocarpa y P. pringeli

    Get PDF
    Natural hybridization between Pinus oocarpa Schiede ex Schlechtendal and P. pringlei Shaw was detected in a sample of 30 individual trees living in simpatry including putative hybrid trees. The area of hybridization is located near Ario de Rosales, Michoacán, México. The canonical discriminant analysis used in the study included a total of 19 morphological and anatomical leaf, cone and seed traits. Trees initially characterized as putative hybrids had intermediate values between parental species for most traits. The number of leaves per fascicle, rows of stomata on the dorsal surface, internal and septal resin canals, peduncle length and cone diameter contributed the most to the canonical discriminant functions and to the separation of the parental species and putative hybrid trees. A second discriminant analysis was performed on samples from 10 trees of P. oocarpa and 7 trees of P. pringlei collected from pure stands outside the area of sympatry and on the data from the 30 trees sampled throughout the sympatric area. In a graphic analysis, trees of every species separated into opposite groups. Furthermore, trees from pure stands were positioned toward the extremes of these groups, indicating a possible process of introgression within the population where hybridization was believed to occur.Se determinó la existencia de hibridación natural entre P. oocarpa Schiede ex Schlechtendal y P. pringlei Shaw analizando una muestra de 30 árboles que habitan naturalmente en simpatría y que incluyó individuos catalogados como híbridos putativos. El área de hibridación se localiza en el municipio de Ario de Rosales, Michoacán. Se utilizó un análisis discriminante de variables canónicas con 19 características morfológicas y anatómicas de acículas, conos y semillas. Los árboles inicialmente catalogados como híbridos putativos resultaron con valores intermedios en la mayoría de las características estudiadas. De éstas las que mayormente contribuyeron en las funciones de discriminación canónica y en la separación de las especies progenitoras de los árboles híbridos en estudio, resultaron ser el número de acículas por fascículo, el de hileras de estomas en la cara dorsal, el de canales resiníferos internos y septales, así como la longitud del pedúnculo y el diámetro del cono. Un segundo análisis discriminante fue realizado con muestras de diez árboles de P. oocarpa y siete de P. pringlei de rodales puros habitando alopátricamente y los de los 30 árboles del rodal en simpatría. El análisis gráfico indicó que los árboles de cada especie se aglomeraron opuestamente unos de otros, aunque los individuos de los rodales puros lo hicieron ligeramente hacia los extremos, lo que puede indicar un posible proceso de infiltración genética en el área de hibridación en estudio

    Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system productivity, terrestrial runoff and redox conditions

    No full text
    International audienceSedimentological studies including X-ray digital analyses, mineralogy, inorganic contents, and organic geochemistry on cores of laminated sediments accumulated in the oxygen minimum zone of the central Peruvian margin reveal variable oceanographic and climate conditions during the last 500 yr. Coherent upcore variations in sedimentological and geochemical markers in box cores taken off Pisco (B0405-6) and Callao (B0405-13) indicate that variability in the climate proxies examined has regional significance. Most noteworthy is a large shift in proxies at ~1820 AD, as determined by 210Pb and 14C radiometric dating. This shift is characterized by an increase in total organic carbon (TOC) in parallel with an abrupt increase in the enrichment factor for molybdenum Mo indicating a regional intensification of redox conditions, at least at the sediment water interface. In addition there was lower terrestrial input of quartz, feldspar and clays to the margin. Based on these results, we interpret that during several centuries prior to 1820, which corresponds to the little ice age (LIA), the northern Humboldt current region was less productive and experienced higher terrestrial input related to more humid conditions on the continent. These conditions were probably caused by a southward displacement of the inter-tropical convergence zone and the subtropical high pressure cell during the LIA. Since 1870, increases in TOC and terrigenous mineral fluxes suggest an increase of wind-driven upwelling and higher productivity. These conditions continued to intensify during the late 20th century, as shown by instrumental records of wind forcing
    corecore