5,845 research outputs found
Compositional Evolution of Individual CoNPs on Co/TiO2 during CO and Syngas Treatment Resolved through Soft XAS/X-PEEM
The nanoparticle (NP) redox state is an important parameter in the performance of cobalt-based Fischer-Tropsch synthesis (FTS) catalysts. Here, the compositional evolution of individual CoNPs (6-24 nm) in terms of the oxide vs metallic state was investigated in situ during CO/syngas treatment using spatially resolved X-ray absorption spectroscopy (XAS)/X-ray photoemission electron microscopy (X-PEEM). It was observed that in the presence of CO, smaller CoNPs (i.e., ≤12 nm in size) remained in the metallic state, whereas NPs ≥ 15 nm became partially oxidized, suggesting that the latter were more readily able to dissociate CO. In contrast, in the presence of syngas, the oxide content of NPs ≥ 15 nm reduced, while it increased in quantity in the smaller NPs; this reoxidation that occurs primarily at the surface proved to be temporary, reforming the reduced state during subsequent UHV annealing. O K-edge measurements revealed that a key parameter mitigating the redox behavior of the CoNPs were proximate oxygen vacancies (Ovac). These results demonstrate the differences in the reducibility and the reactivity of Co NP size on a Co/TiO2 catalyst and the effect Ovac have on these properties, therefore yielding a better understanding of the physicochemical properties of this popular choice of FTS catalysts
Monitoring and Data Analytics for Optical Networking:Benefits, Architectures, and Use Cases
Operators' network management continuously measures network health by collecting data from the deployed network devices; data is used mainly for performance reporting and diagnosing network problems after failures, as well as by human capacity planners to predict future traffic growth. Typically, these network management tools are generally reactive and require significant human effort and skills to operate effectively. As optical networks evolve to fulfil highly flexible connectivity and dynamicity requirements, and supporting ultra-low latency services, they must also provide reliable connectivity and increased network resource efficiency. Therefore, reactive human-based network measurement and management will be a limiting factor in the size and scale of these new networks. Future optical networks must support fully automated management, providing dynamic resource re-optimization to rapidly adapt network resources based on predicted conditions and events; identify service degradation conditions that will eventually impact connectivity and highlight critical devices and links for further inspection; and augment rapid protection schemes if a failure is predicted or detected, and facilitate resource optimization after restoration events. Applying automation techniques to network management requires both the collection of data from a variety of sources at various time frequencies, but it must also support the capability to extract knowledge and derive insight for performance monitoring, troubleshooting, and maintain network service continuity. Innovative analytics algorithms must be developed to derive meaningful input to the entities that orchestrate and control network resources; these control elements must also be capable of proactively programming the underlying optical infrastructure. In this article, we review the emerging requirements for optical network management automation, the capabilities of current optical systems, and the development and standardization status of data models and protocols to facilitate automated network monitoring. Finally, we propose an architecture to provide Monitoring and Data Analytics (MDA) capabilities, we present illustrative control loops for advanced network monitoring use cases, and the findings that validate the usefulness of MDA to provide automated optical network management
An open prospective study on the efficacy of Navina Smart, an electronic system for transanal irrigation, in neurogenic bowel dysfunction
Background:
Transanal irrigation (TAI) has emerged as a key option when more conservative bowel management does not help spinal cord injured (SCI) individuals with neurogenic bowel dysfunction (NBD).
Aim:
To investigate the short-term efficacy and safety of an electronic TAI system (Navina Smart) in subjects with NBD.
Design:
We present an open, prospective efficacy study on Navina Smart, in individuals with NBD secondary to SCI, studied at three months.
Population:
Eighty-nine consecutive consenting established SCI individuals (61 male; mean age 48, range 18–77) naïve to TAI treatment were recruited from ten centres in seven countries. Subjects had confirmed NBD of at least moderate severity (NBD score ≥10).
Methods:
Subjects were taught how to use the device at baseline assisted by the Navina Smart app, and treatment was tailored during phone calls until optimal TAI regime was achieved. The NBD score was measured at baseline and at three months follow up (mean 98 days). Safety analysis was performed on the complete population while per protocol (PP) analysis was performed on 52 subjects.
Results:
PP analysis showed a significant decrease in mean NBD score (17.8 to 10, p<0.00001). In subjects with severe symptoms (defined as NBD score ≥14), mean NBD scores decreased (19.4 to 10.9, p<0.0001). The number of subjects with severe symptoms decreased from 41 (79%) subjects at baseline to 16 (31%) at three months follow-up. Device failure accounted for the commonest cause for loss of data. Side effects possibly related to the device developed in 11 subjects (12%). Discontinuation due to failure of therapy to relieve symptoms was reported by 5 subjects (6%).
Conclusion:
Navina Smart is effective for individuals with NBD, even those with severe symptoms; long-term data will follow. Whilst there were some device problems (addressed by the later stages of subject recruitment) the treatment was generally safe
An open prospective study on the efficacy of Navina Smart, an electronic system for transanal irrigation, in neurogenic bowel dysfunction
Background:
Transanal irrigation (TAI) has emerged as a key option when more conservative bowel management does not help spinal cord injured (SCI) individuals with neurogenic bowel dysfunction (NBD).
Aim:
To investigate the short-term efficacy and safety of an electronic TAI system (Navina Smart) in subjects with NBD.
Design:
We present an open, prospective efficacy study on Navina Smart, in individuals with NBD secondary to SCI, studied at three months.
Population:
Eighty-nine consecutive consenting established SCI individuals (61 male; mean age 48, range 18–77) naïve to TAI treatment were recruited from ten centres in seven countries. Subjects had confirmed NBD of at least moderate severity (NBD score ≥10).
Methods:
Subjects were taught how to use the device at baseline assisted by the Navina Smart app, and treatment was tailored during phone calls until optimal TAI regime was achieved. The NBD score was measured at baseline and at three months follow up (mean 98 days). Safety analysis was performed on the complete population while per protocol (PP) analysis was performed on 52 subjects.
Results:
PP analysis showed a significant decrease in mean NBD score (17.8 to 10, p<0.00001). In subjects with severe symptoms (defined as NBD score ≥14), mean NBD scores decreased (19.4 to 10.9, p<0.0001). The number of subjects with severe symptoms decreased from 41 (79%) subjects at baseline to 16 (31%) at three months follow-up. Device failure accounted for the commonest cause for loss of data. Side effects possibly related to the device developed in 11 subjects (12%). Discontinuation due to failure of therapy to relieve symptoms was reported by 5 subjects (6%).
Conclusion:
Navina Smart is effective for individuals with NBD, even those with severe symptoms; long-term data will follow. Whilst there were some device problems (addressed by the later stages of subject recruitment) the treatment was generally safe
Divergent abiotic spectral pathways unravel pathogen stress signals across species
Abstract: Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world’s most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic–abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide
A Peer-reviewed Newspaper About_ Excessive Research
Research on machines, research with machines, and research as a machine.
Publication resulting from research workshop at Exhibition Research Lab, Liverpool John Moores University, organised in collaboration with Liverpool John Moores University and Liverpool Biennial, and transmediale festival for art and digital culture, Berlin
The 2HWC HAWC Observatory Gamma Ray Catalog
We present the first catalog of TeV gamma-ray sources realized with the
recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the
most sensitive wide field-of-view TeV telescope currently in operation, with a
1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an
instantaneous field of view >1.5 sr and >90% duty cycle, it continuously
surveys and monitors the sky for gamma ray energies between hundreds GeV and
tens of TeV.
HAWC is located in Mexico at a latitude of 19 degree North and was completed
in March 2015. Here, we present the 2HWC catalog, which is the result of the
first source search realized with the complete HAWC detector. Realized with 507
days of data and represents the most sensitive TeV survey to date for such a
large fraction of the sky. A total of 39 sources were detected, with an
expected contamination of 0.5 due to background fluctuation. Out of these
sources, 16 are more than one degree away from any previously reported TeV
source. The source list, including the position measurement, spectrum
measurement, and uncertainties, is reported. Seven of the detected sources may
be associated with pulsar wind nebulae, two with supernova remnants, two with
blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
Bridging flavour violation and leptogenesis in SU(3) family models
We reconsider basic, in the sense of minimal field content, Pati-Salam x
SU(3) family models which make use of the Type I see-saw mechanism to reproduce
the observed mixing and mass spectrum in the neutrino sector. The goal of this
is to achieve the observed baryon asymmetry through the thermal decay of the
lightest right-handed neutrino and at the same time to be consistent with the
expected experimental lepton flavour violation sensitivity. This kind of models
have been previously considered but it was not possible to achieve a
compatibility among all of the ingredients mentioned above. We describe then
how different SU(3) messengers, the heavy fields that decouple and produce the
right form of the Yukawa couplings together with the scalars breaking the SU(3)
symmetry, can lead to different Yukawa couplings. This in turn implies
different consequences for flavour violation couplings and conditions for
realizing the right amount of baryon asymmetry through the decay of the
lightest right-handed neutrino. Also a highlight of the present work is a new
fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte
Leptonic CP Violation and Neutrino Mass Models
We discuss leptonic mixing and CP violation at low and high energies,
emphasizing possible connections between leptogenesis and CP violation at low
energies, in the context of lepton flavour models. Furthermore we analyse weak
basis invariants relevant for leptogenesis and for CP violation at low
energies. These invariants have the advantage of providing a simple test of the
CP properties of any lepton flavour model.Comment: 26 pages, no figures, submitted to the Focus Issue on `Neutrino
Physics` edited by F. Halzen, M. Lindner and A. Suzuki, to be published in
New Journal of Physic
- …