49 research outputs found

    Impact of COVID-19 Pandemic on TAVR Activity: A Worldwide Registry

    Get PDF
    Background: The COVID-19 pandemic had a considerable impact on the provision of structural heart intervention worldwide. Our objectives were: 1) to assess the impact of the COVID-19 pandemic on transcatheter aortic valve replacement (TAVR) activity globally; and 2) to determine the differences in the impact according to geographic region and the demographic, development, and economic status of diverse international health care systems. Methods: We developed a multinational registry of global TAVR activity and invited individual TAVR sites to submit TAVR implant data before and during the COVID-19 pandemic. Specifically, the number of TAVR procedures performed monthly from January 2019 to December 2021 was collected. The adaptive measures to maintain TAVR activity by each site were recorded, as was a variety of indices relating to type of health care system and national economic indices. The primary subject of interest was the impact on TAVR activity during each of the pandemic waves (2020 and 2021) compared with the same period pre–COVID-19 (2019). Results: Data were received from 130 centers from 61 countries, with 14 subcontinents and 5 continents participating in the study. Overall, TAVR activity increased by 16.7% (2,337 procedures) between 2018 and 2019 (ie, before the pandemic), but between 2019 and 2020 (ie, first year of the pandemic), there was no significant growth (–0.1%; –10 procedures). In contrast, activity again increased by 18.9% (3,085 procedures) between 2020 and 2021 (ie, second year of the pandemic). During the first pandemic wave, there was a reduction of 18.9% (945 procedures) in TAVR activity among participating sites, while during the second and third waves, there was an increase of 6.7% (489 procedures) and 15.9% (1,042 procedures), respectively. Further analysis and results of this study are ongoing and will be available at the time of the congress. Conclusion: The COVID-19 pandemic initially led to a reduction in the number of patients undergoing TAVR worldwide, although health care systems subsequently adapted, and the number of TAVR recipients continued to grow in subsequent COVID-19 pandemic waves. Categories: STRUCTURAL: Valvular Disease: Aorti

    Unraveling the Complex Behavior of Mrk 421 with Simultaneous X-Ray and VHE Observations during an Extreme Flaring Activity in 2013 April*

    Get PDF
    We report on a multiband variability and correlation study of the TeV blazar Mrk 421 during an exceptional flaring activity observed from 2013 April 11 to 19. The study uses, among others, data from GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), Swift, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Large Area Telescope, Very Energetic Radiation Imaging Telescope Array System (VERITAS), and Major Atmospheric Gamma Imaging Cherenkov (MAGIC). The large blazar activity and the 43 hr of simultaneous NuSTAR and MAGIC/VERITAS observations permitted variability studies on 15 minute time bins over three X-ray bands (3-7 keV, 7-30 keV, and 30-80 keV) and three very-high-energy (VHE; >0.1 TeV) gamma-ray bands (0.2-0.4 TeV, 0.4-0.8 TeV, and >0.8 TeV). We detected substantial flux variations on multi-hour and sub-hour timescales in all of the X-ray and VHE gamma-ray bands. The characteristics of the sub-hour flux variations are essentially energy independent, while the multi-hour flux variations can have a strong dependence on the energy of the X-rays and the VHE gamma-rays. The three VHE bands and the three X-ray bands are positively correlated with no time lag, but the strength and characteristics of the correlation change substantially over time and across energy bands. Our findings favor multi-zone scenarios for explaining the achromatic/chromatic variability of the fast/slow components of the light curves, as well as the changes in the flux-flux correlation on day-long timescales. We interpret these results within a magnetic reconnection scenario, where the multi-hour flux variations are dominated by the combined emission from various plasmoids of different sizes and velocities, while the sub-hour flux variations are dominated by the emission from a single small plasmoid moving across the magnetic reconnection layer

    Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009

    Get PDF
    Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios.Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature.Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays).Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties
    corecore