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A. Lähteenmäki,61, 65 M. Tornikoski,61 J. Tammi,61 V. Ramakrishnan,61 and R. Reinthal43

1Inst. de Astrofsica de Canarias, E-38200 La Laguna, and Universidad de La Laguna, Dpto. Astrofsica, E-38206 La Laguna, Tenerife,

Spain
2Universit di Udine, and INFN Trieste, I-33100 Udine, Italy
3Japanese MAGIC Consortium: ICRR, The University of Tokyo, 277-8582 Chiba, Japan; Department of Physics, Kyoto University,

606-8502 Kyoto, Japan; Tokai University, 259-1292 Kanagawa, Japan; RIKEN, 351-0198 Saitama, Japan
4National Institute for Astrophysics (INAF), I-00136 Rome, Italy
5ETH Zurich, CH-8093 Zurich, Switzerland

Corresponding author: David Paneque, Ana Babic, Justin Finke, Tarek Hassan, Maria Petropoulou

dpaneque@mppmu.mpg.de, ana.babic@fer.hr, justin.finke@nrl.navy.mil, thassan@ifae.es, m.petropoulou@astro.princeton.edu

ar
X

iv
:2

00
1.

08
67

8v
1 

 [
as

tr
o-

ph
.H

E
] 

 2
3 

Ja
n 

20
20

mailto: dpaneque@mppmu.mpg.de, ana.babic@fer.hr, justin.finke@nrl.navy.mil, thassan@ifae.es, m.petropoulou@astro.princeton.edu


2 Ahnen et al.

6Technische Universitt Dortmund, D-44221 Dortmund, Germany
7Croatian Consortium: University of Rijeka, Department of Physics, 51000 Rijeka; University of Split - FESB, 21000 Split; University of

Zagreb - FER, 10000 Zagreb; University of Osijek, 31000 Osijek; Rudjer Boskovic Institute, 10000 Zagreb, Croatia
8Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India
9Centro Brasileiro de Pesquisas Fsicas (CBPF), 22290-180 URCA, Rio de Janeiro (RJ), Brasil
10IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, E-28040 Madrid, Spain
11University of Lodz, Faculty of Physics and Applied Informatics, Department of Astrophysics, 90-236 Lodz, Poland
12Universit di Siena and INFN Pisa, I-53100 Siena, Italy
13Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany
14Universit di Padova and INFN, I-35131 Padova, Italy
15Istituto Nazionale Fisica Nucleare (INFN), 00044 Frascati (Roma) Italy
16Max-Planck-Institut für Physik, D-80805 München, Germany
17Institut de F́ısica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), E-08193 Bellaterra (Barcelona),

Spain
18Universit di Pisa, and INFN Pisa, I-56126 Pisa, Italy
19Universitat de Barcelona, ICCUB, IEEC-UB, E-08028 Barcelona, Spain
20The Armenian Consortium: ICRANet-Armenia at NAS RA, A. Alikhanyan National Laboratory
21Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas, E-28040 Madrid, Spain
22now at University of Innsbruck
23also at Port d’Informaci Cientfica (PIC) E-08193 Bellaterra (Barcelona) Spain
24Universität Würzburg, D-97074 Würzburg, Germany
25Finnish MAGIC Consortium: Finnish Centre of Astronomy with ESO (FINCA), University of Turku, FI-20014 Turku, Finland;

Astronomy Research Unit, University of Oulu, FI-90014 Oulu, Finland
26Departament de F́ısica, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
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ABSTRACT

We report on a multi-band variability and correlation study of the TeV blazar Mrk 421 during an exceptional flaring

activity observed from 2013 April 11 to 2013 April 19. The study uses, among others, data from GASP-WEBT,

Swift, NuSTAR, Fermi-LAT, VERITAS, and MAGIC. The large blazar activity, and the 43 hours of simultaneous

NuSTAR and MAGIC/VERITAS observations, permitted variability studies on 15 minute time bins, and over three

X-ray bands (3–7 keV, 7–30 keV and 30–80 keV) and three very-high-energy (>0.1 TeV, hereafter VHE) gamma-ray

bands (0.2–0.4 TeV, 0.4–0.8 TeV and >0.8 TeV). We detected substantial flux variations on multi-hour and sub-

hour timescales in all the X-ray and VHE gamma-ray bands. The characteristics of the sub-hour flux variations are

essentially energy-independent, while the multi-hour flux variations can have a strong dependence on the energy of

the X-ray and the VHE gamma rays. The three VHE bands and the three X-ray bands are positively correlated with

no time-lag, but the strength and the characteristics of the correlation changes substantially over time and across

energy bands. Our findings favour multi-zone scenarios for explaining the achromatic/chromatic variability of the

fast/slow components of the light curves, as well as the changes in the flux-flux correlation on day-long timescales. We

interpret these results within a magnetic reconnection scenario, where the multi-hour flux variations are dominated by

the combined emission from various plasmoids of different sizes and velocities, while the sub-hour flux variations are

dominated by the emission from a single small plasmoid moving across the magnetic reconnection layer.

Keywords: BL Lacertae objects: individual (Markarian 421) galaxies: active gamma rays: general

radiation mechanisms: nonthermal X-rays: galaxies



4 Ahnen et al.

1. INTRODUCTION

Markarian 421 (Mrk 421), with a redshift of z = 0.0308,

is one of the closest BL Lac objects (Ulrich et al. 1975),

which happens to be also the first BL Lac object signif-

icantly detected at gamma-ray energies (with EGRET,

Lin et al. 1992), and the first extragalactic object

significantly detected at very-high-energy (>0.1 TeV,

hereafter VHE) gamma rays (with Whipple, Punch

et al. 1992). Mrk 421 is also the brightest persistent

X-ray/TeV blazar in the sky, and among the few sources

whose spectral energy distribution (SED) can be accu-

rately characterized by current instruments from radio-

to-VHE (Abdo et al. 2011). Consequently, Mrk 421 is

among the few X-ray/TeV objects that can be studied

with a great level of detail during both low and high ac-

tivity (Fossati et al. 2008; Aleksić et al. 2015b; Baloković

et al. 2016), and hence an object whose study maximizes

our chances to understand the blazar phenomenon in

general.

Because of these reasons, every year since 2009, we

organize extensive multiwavelength (MWL) observing

campaigns where Mrk 421 is monitored from radio-to-

VHE gamma rays during the half year that it is vis-

ible with optical telescopes and Imaging Atmospheric

Cherenkov Telescopes (IACTs). This multi-instrument

and multi-year program provides a large time and energy

coverage that, owing to the brightness and proximity of

Mrk 421, yields the most detailed characterization of the

broadband SED and its temporal evolution, compared

to any other MWL campaign on any other TeV target.

During the MWL campaign in the 2013 season,

in the second week of 2013 April, we observed ex-

ceptionally high X-ray and VHE gamma-ray activity

with the Neil Gehrels Swift Gamma-ray Burst Obser-

vatory (Swift), the Nuclear Spectroscopic Telescope

Array (NuSTAR), the Large Area Telescope onboard

the Fermi Gamma-ray Space Telecope (Fermi-LAT),

the Major Atmospheric Gamma Imaging Cherenkov

telescope (MAGIC), and the Very Energetic Radiation

Imaging Telescope Array System (VERITAS), as re-

ported in various Astronomer’s Telegrams (e.g. see

Baloković et al. 2013; Cortina & Holder 2013; Paneque

et al. 2013). Among other things, the VHE gamma-

ray flux was found to be two orders of magnitude larger

than that measured during the first months of the MWL

campaign in January and February 2013 (Baloković et

al. 2016). This enhanced activity triggered very deep

observations with optical, X-ray and gamma-ray instru-

ments, including a modified survey mode for Fermi from

April 12 (23:00 UTC) until April 15th (18:00 UTC),

which increased the LAT exposure on Mrk 421 by about

a factor of two.

While Mrk 421 has shown outstanding X-ray and VHE

gamma-ray activity in the past (e.g. Gaidos et al. 1996;

Fossati et al. 2008; Abeysekara et al. 2020), this is the

most complete characterization of a flaring activity of

Mrk 421 to date. An extensive multi-instrument dataset

was accumulated during nine consecutive days. It in-

cludes VHE observations with MAGIC, the use of public

VHE data from VERITAS, and high-sensitive X-ray ob-

servations with NuSTAR. Notably, there are 43 hours of

simultaneous VHE gamma-ray (MAGIC and VERITAS)

and X-ray (NuSTAR) observations. A first evaluation

of the X-ray activity measured with Swift and NuSTAR

was reported in Paliya et al. (2015). This manuscript

reports the full multi-band characterisation of this out-

standing event, which includes, for the first time, a re-

port of the VHE gamma-ray data, and it focuses on an

unprecedented study of the X-ray-vs-VHE correlation in

3× 3 energy bands. This study demonstrates that there

is a large degree of complexity in the variability in the

X-ray and VHE gamma-ray domains, which relate to the

most energetic and variable segments of Mrk 421’s SED,

and indicates that the broadband emission of blazars

require multi-zone theoretical models.

This paper is organized as follows: in Section 2

we briefly describe the observations that were per-

formed, and in Section 3 we report the measured multi-

instrument light curves. Section 4 provides a detailed

characterization of the multi-band variability, with spe-

cial focus on the X-ray and VHE gamma-ray variations

observed on April 15th. In Section 5 we characterize the

multi-band correlations observed when comparing the

X-ray emission in three energy bands, with that of VHE

gamma rays in three energy bands. In Section 6 we

discuss the implications of the observational results re-

ported in this paper and finally, in Section 7, we provide

some concluding remarks.

2. OBSERVATIONS AND DATASETS

The observations presented here are part of the multi-

instrument campaign for Mrk 421 that has occurred

yearly since 2009 (Abdo et al. 2011). The instruments

that participate in this campaign can change somewhat

from year to year, but they are typically more than 20

covering energies from radio to VHE gamma rays. The

2013 campaign included observations from NuSTAR for

the first time, as a part of its primary mission (Harri-

son et al. 2013). The instruments that participated in

the 2013 campaign, as well as their performances and

data analysis strategies, were reported in Baloković et

al. (2016), which is our first publication with the 2013

multi-instrument data set, and focused on the low X-

ray/VHE activity observed in January-to-March 2013.
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Table 1. MAGIC, VERITAS and NuSTAR Observations Overlap

Night Date Date MAGIC + VERITAS NuSTAR VHE observations with

Apr 2013 MJD binsa simultaneousb binsa simultaneous X-ray coveragec

(1) (2) (3) (4) (5) (6) (7)

1 . . . . 10/11 56392/56393 21 + 15 0 43 30/36 (83%)

2 . . . . 11/12 56393/56394 24 + 25 2 65 33/47 (70%)

3 . . . . 12/13 56394/56395 23 + 14 4 17 14/33 (42%)

4 . . . . 13/14 56395/56396 25 + 19 3 30 29/41 (71%)

5 . . . . 14/15 56396/56397 25 + 24 2 30 31/47 (66%)

6 . . . . 15/16 56397/56398 16 + 11 0 30 20/27 (74%)

7 . . . . 16/17 56398/56399 10 + 0 0 32 4/10 (40%)

8 . . . . 17/18 56399/56400 13 + 0 0 20 6/13 (46%)

9 . . . . 18/19 56400/56401 10 + 0 0 19 6/10 (60%)

all . . . 10-19 56392 - 56401 167 + 108 11 286 173/264 (66%)

aNumber of 15-minute time bins with observations by the respective instrument.
bNumber of 15-minute time bins with measurements above 0.4 TeV in which MAGIC and VERITAS observed

the source simultaneously.
c The ratio of X-ray 15-bins simultaneous to the VHE 15-min bins (used as denominator), and percentage.

During the first observations in April 2013, Mrk 421

showed high X-ray and VHE gamma-ray activity, which

triggered daily-few-hour-long multi-instrument observa-

tions that lasted from April 10 (MJD 56392) to April

19 (MJD 56401). Among other instruments, this data

set contains an exceptionally deep temporal coverage

at VHE gamma rays above 0.2 TeV, as the source was

observed with MAGIC during nine consecutive nights,

and with VERITAS during six nights (Benbow 2017).

The geographical longitude of VERITAS is 93◦ (about

six hours) west to that of MAGIC, and hence VERI-

TAS observations followed those from MAGIC, some-

times providing continuous VHE gamma-ray coverage

during 10 hours in a single night. The total MAGIC

observation time was nearly 42 hours, while for VERI-

TAS it was 27 hours, yielding a total VHE observation

time of 69 hours in nine days (66 hours when count-

ing once the MAGIC-VERITAS simultaneous observa-

tions). The time coverage of VHE data is slightly dif-

ferent for different VHE gamma-ray energies, being a

few hours longer above 0.8 TeV in comparison to that

below 0.4 TeV. This un-even coverage is due to the in-

creased energy threshold associated with observations

taken at large zenith angles. In the case of MAGIC, the

energy threshold at zenith angles of about 60◦ is about

0.4 TeV, and hence the low-energy gamma-ray obser-

vations are not possible (see Aleksić et al. 2016, for

dependence of analysis energy threshold with the zenith

angle of observations). MAGIC and VERITAS observed

Mrk 421 simultaneously during 2hr 45min. The simul-

taneous observations between these two instruments oc-

curred when MAGIC was observing at large zenith an-

gle (> 55◦), hence yielding simultaneous flux measure-

ments only above 0.4 TeV. The extensive VHE cover-

age is particularly relevant since, as it will be described

in Section 3, Mrk 421 showed large variability and one

of the brightest VHE flaring activity recorded to date.

This unprecedented brightness allows us to match the

sampling frequency of the simultaneous VHE (MAGIC

and VERITAS) and X-ray (NuSTAR) observations to

15-min time intervals in three distinct energy bands:

0.2–0.4 TeV, 0.4–0.8 TeV and >0.8 TeV. The above-

mentioned time-cadence and energy bands were chosen

as a good compromise between having both, a good sam-

pling of the multi-band VHE activity of Mrk 421 during

the April 2013 period, and reasonably accurate VHE

flux measurements, with the relative flux errors typi-

cally below 10%. See Benbow (2017) for the VERITAS

photon fluxes. In the case of the MAGIC light curves

in the three energy bands, the small effect related to
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the event migration in energy was computed using the

VHE gamma-ray spectrum from the full 9-day data set,

which is well represented by the following log-parabola

function

dΦ

dE
=

(
E

0.3 TeV

)−(2.14)−(0.45)·log 10( E
0.3TeV )

(1)

However, owing to the relatively narrow energy bands,

the derived photon fluxes are not significantly affected

by the specific choice of the used spectral shape: the

photon fluxes derived with power-law spectra with in-

dices p = 2 and p = 3 are in agreement, within the

statistical uncertainties, with those derived with the 9-

day log-parabolic spectral shape.

Using the simultaneous MAGIC and VERITAS ob-

servations, we noted a systematic offset of about 20% in

the VHE gamma-ray flux measurements derived with

these two instruments. The VHE gamma-ray fluxes

from VERITAS are systematically lower than those from

MAGIC by a factor that is energy-dependent, being

about 10% in the 0.2–0.4 TeV band, and about 30%

above 0.8 TeV. This offset, which is perfectly consis-

tent with the known systematic uncertainties affecting

each experiment (Madhavan & for the VERITAS Col-

laboration 2013; Aleksić et al. 2016), becomes evident

due to the low statistical uncertainties associated with

the flux measurements reported here. Appendix A re-

ports a characterization of this offset, and describes the

procedure that we followed for correcting it, scaling up

the VERITAS fluxes to match those from MAGIC. The

physics results reported in this manuscript do not de-

pend on the absolute value of the VHE gamma-ray flux,

and hence one could have scaled down the MAGIC fluxes

to match those of VERITAS. The correction applied is

only relevant for the intra-night variability and correla-

tion studies.

A key characteristic of this dataset is the extensive

and simultaneous coverage in the X-ray bands provided

by Swift and, especially, by NuSTAR. Swift observed

Mrk 421 for 18 hours, split in 63 observations spread over

the nine days, and performed during the MAGIC and

VERITAS observations. NuSTAR observed Mrk 421 for

71 hours during the above-mentioned nine days, out of

which 43 hours were taken simultaneously to the VHE

observations from MAGIC and VERITAS. The VHE

and X-ray temporal coverage is summarized in Table 1.

The raw NuSTAR data were processed exactly as de-

scribed in Baloković et al. (2016), except that in this

study the NuSTAR analysis was performed separately

for each 15-minute time bin with simultaneous VHE

observations, as summarized in Table 1. Using Xspec

(Arnaud 1996), we calculated fluxes in the 3–7 keV,

7–30 keV, and 30–80 keV bands from a fit of a log-

parabolic model to the data within each time bin. The

cross-normalization between the two NuSTAR telescope

modules was treated as a free parameter. The statisti-

cal uncertainties on fluxes were calculated as 68 % con-

fidence intervals, and do not include the systematic un-

certainty in absolute calibration, which is estimated to

be 10–20 % (Madsen et al. 2015).

The analysis procedures used to process the Swift-

XRT data are described in Baloković et al. (2016). In ad-

dition, in order to avoid additional flux uncertainties, we

excluded 16 Swift-XRT observations in which Mrk 421

was positioned near the CCD bad-columns (Madsen et

al. 2017). Fig. 1 shows a comparison of the Swift-XRT

and NuSTAR X-ray fluxes in the band 3–7 keV. Overall,

there is a good agreement between the two instruments,

with flux differences typically smaller than 20%. Such

flux differences are within the systematic uncertainties

in the absolute flux calibration of NuSTAR (Madsen et

al. 2015) and Swift-XRT (Madsen et al. 2017).

Differently to the Fermi-LAT analysis reported in

Baloković et al. (2016), the LAT data results shown

here were produced with events above 0.3 GeV (in-

stead of 0.1 GeV) and with Pass8 (instead of Pass7).

The analysis above 0.3 GeV is less affected by sys-

tematic uncertainties, and it is also less sensitive to

possible contamination from non-accounted (transient)

neighboring sources. The higher minimum energy re-

duces somewhat the detected number of photons from

the source, but, owing to its hard gamma-ray spectrum

(photon index<2.0), the effect is small. Specifically, we

used the standard Fermi analysis software tools version

v11r07p00, and the P8R3 SOURCE V2 response func-

tion on events with energy above 0.3 GeV coming from

a 10◦ region of interest (ROI) around Mrk 421. We

used a 100◦ zenith-angle cut to avoid contamination

from the Earth’s limb1, and modeled the diffuse Galac-

tic and isotropic extragalactic background with the files

gll iem v07.fits and iso P8R3 SOURCE V2 v1.txt re-

spectively2. All point sources in the fourth Fermi-LAT

source catalog (4FGL, Abdollahi et al. 2019) located

in the 10◦ ROI and an additional surrounding 5◦-wide

annulus were included in the model. In the unbinned

likelihood fit, the spectral parameters were set to the

values from the 4FGL, while the normalization of the

diffuse components and the normalization parameters

1 A zenith-angle cut of 90◦ is needed if using events down to
0.1 GeV, but one can use a zenith-angle cut of 100◦ above 0.3 GeV
without the need for using a dedicated Earth limb template.

2 https://fermi.gsfc.nasa.gov/ssc/data/access/lat/

BackgroundModels.html

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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of the 16 sources (within the ROI) identified as vari-

able were initially left free to vary. However, owing to

the short timescales considered in this analysis, only

two of these sources were significantly detected in 10

days: 4FGL J1127.8+3618 and 4FGL J1139.0+4033,

and hence we fixed the normalization of the other ones

to the 4FGL catalog values. The Fermi-LAT spec-

trum from the 10-day time period considered here (from

MJD 56392 to MJD 56402) is well described with a

power-law function with a photon flux above 0.3 GeV of

(23.3±1.6)×10−8cm−2s−1 and photon index 1.79±0.05.

A spectral analysis over 1-day and 12-hour time inter-

vals shows that the photon index does not vary signifi-

cantly throughout the 10-day period. The data was split

into 12-hours-long intervals centered at the VHE obser-

vations (e.g. simultaneous to the VHE) and their com-

plementary time intervals (e.g. when there are no VHE

observations), which are close to 12-hours-long intervals.

Owing to the limited event count in the 12-hour time in-

tervals, and the lack of spectral variability throughout

the 10-day period, we fixed the shape to the power-law

index to 1.79 (the value from the 10-day period) to de-

rive the photon fluxes, keeping always the normalization

factor for Mrk 421 and the two above-mentioned 4FGL

sources as a free parameters in the log-likelihood fit of

each of the 12-hour time intervals.

The characterization of the activity of Mrk 421 at op-

tical frequencies was performed with many instruments

from the GLAST-AGILE Support Program (GASP) of

the Whole Earth Blazar Telescope (WEBT), here after

GASP-WEBT (e.g., Villata et al. 2008, 2009), namely

the observatory in Roque de los Muchachos (KVA tele-

scope), Lowell (Perkins telescope), Crimean, St. Peters-

burg, Abastumani, Rozhen (50/70 cm, 60 cm, and 200

cm telescopes), Vidojevica, and Lulin. Moreover, this

study also uses data from the iTelescopes, the Remote

Observatory for Variable Object Research (ROVOR),

and the TUBITAK National Observatory (TUG). The

polarization measurements were performed with four ob-

servatories: Lowell (Perkins telescope), St. Petersburg,

Crimean, and Steward (Bok telescope). The data reduc-

tion was done exactly as in Baloković et al. (2016).

Besides the 15 GHz and 37 GHz radio observations

performed with the OVRO and Metsahovi telescopes,

which were described in Baloković et al. (2016), here

we also present a flux measurement performed with the

IRAM 30m telescope at 86 GHz. This observation was

performed under the Polarimetric Monitoring of AGN at

Millimeter Wavelengths program (POLAMI3, Agudo et

3 http://polami.iaa.es

al. 2018b), that regularly monitors Mrk 421 in the short

millimeter range. The POLAMI data was reduced and

calibrated as described in Agudo et al. (2018a).

3. MULTI-INSTRUMENT LIGHT CURVES

DURING THE OUTSTANDING FLARING

ACTIVITY IN APRIL 2013

The multi-instrument light curves derived from all the

observations spanning from radio to VHE gamma rays

are shown in Fig. 1. The top panel of Fig. 1 shows an ex-

cellent coverage of the 9-day flaring activity in the VHE

regime, as a result of the combined MAGIC and VER-

ITAS observations. The peak flux at TeV energies, ob-

served in April 13 (MJD 56395), reached up to 15 times

the flux of the Crab Nebula, that is about 30 times the

typical non-flaring activity of Mrk 421, and about 150

times the activity shown a few months before, on Jan-

uary and February 2013, as reported in Baloković et

al. (2016). Moreover, this is the highest TeV flux ever

measured with MAGIC for any blazar. This is also the

third highest flux ever measured from a blazar with an

IACT, after the extremely large outburst from Mrk 421

detected with VERITAS in February 2010 (Abeysekara

et al. 2020) and the large flare from PKS 2155-304 de-

tected by HESS in July 2006 (Aharonian et al. 2007).

Figure 1 shows that the most extreme flux variations

occur in the X-ray and the VHE gamma-ray bands. At

GeV energies, within the accuracy of the measurements,

there is enhanced activity only on MJD 56397 (April

15th), when the flux is about a factor of two larger than

the previous and following ∼12-hour time intervals. In-

terestingly, on April 15th we also find the highest X-

ray flux, and the highest intra-night X-ray flux increase

measured during this flaring activity in April 2013.

The R-band activity is comparable to the one mea-

sured in January-March 2013, when Mrk 421 showed

very low VHE and X-ray activity (Baloković et al.

2016). The measured fluxes at optical wavelengths

are large when compared to the flux levels typically

seen during the period of 2007-2015 (Carnerero et al.

2017). Generally, during the observations performed

in January-April 2013, Mrk 421 was 4–5 times brighter

in the optical than the photometric minima that oc-

curred in 2008-09 and at the end of 2011. Fig. 1 shows

that Mrk 421 faded at R-band from about 60 mJy on

MJD 56393 to about 45 mJy two days later, and then

varied between 45-50 mJy during the following week,

and appear decoupled from the VHE and X-ray activ-

ity. The optical light curve is in agreement with that of

the less well sampled Swift/UVOT light curve. Besides

the optical brightness of Mrk 421 in 2013, the object

showed a bluer optical continuum than average. This
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was determined from the differential spectrophotome-

try obtained by the Steward Observatory monitoring

program. By comparing the instrumental spectrum of

Mrk 421 with that of a nearby field comparison star, it

is found that for the wavelengths 475 nm and 725 nm

[F (475)/F (725)]April−2013/[F (475)/F (725)]average =

1.072 ± 0.002, where the average instrumental flux ratio

is determined from all of the available observations from

2008-2018. The bluer color of Mrk 421 is consistent with

a higher dominance of the non-thermal continuum over

the host galaxy starlight included within the observing

aperture, which has a redder spectrum. This explana-

tion for the observed variations in the optical color of

Mrk 421 is further confirmed by the trend that the con-

tinuum becomes slightly redder as the AGN generally

fades during April 2013. The same trend in color is also

seen in the long-term near-IR data (Carnerero et al.

2017).

Optical linear polarization of Mrk 421 was also moni-

tored, and the measurements are shown in Fig. 1. Again,

the results are comparable to those measured during

the first quarter in 2013, and reported in Baloković et

al. (2016). Since 2008, the degree of polarization, P ,

has ranged from 0% to 15%, although observations of

P > 10% are rare, about 10 out of around 1400 obser-

vations (Carnerero et al. 2017). During April 2013, the

polarization ranged from about 1–9%, with a large ma-

jority of measurements showing P < 5%. The largest

changes in the degree of polarization on a daily time

scale were an increase from P ∼ 3% to P ∼ 7% on

MJD 56399/400, followed by a decrease back to about

4% on the next day. Changes of nearly as much as

5% in polarization are observed within a day, partic-

ularly on MJD 56398/99, but otherwise, variations in

P are typically limited to <1% over hour timescales.

The electric vector position angle (EVPA) of the opti-

cal polarization was at about -20◦ at the start of 2013

April. Between MJD 56394 and MJD 56395 the EVPA

rotated from about -30◦ to about -90◦ while generally

P < 2.5%. The largest daily rotation in EVPA occurs

between MJD 56395 and MJD 56396, where the EVPA

goes from about -90◦ to about -10◦. Because of the

daily gap in the optical monitoring, it is unfortunately

not clear if the EVPA reversed its direction of rotation

from MJD 56394 to MJD 56396 (i.e. 2 days), or contin-

ued in the same direction requiring a rotation of >90◦

during one of the two observing gaps on MJD 56394/6.

The variability of Mrk 421 during the densely sampled

portions of the optical monitoring does not hint that

such large changes in EVPA can take place on short time

scales until near the the end of MJD 56398 when a coun-

terclockwise rotation of about 50◦ is seen over a period

of about 6 hours. Outside of this excursion, the EVPA

stays near 0◦ from MJD 56396 onward. The single daily

deviation of EVPA to 90–100◦ on MJD 56395 coincides

with brightest VHE flare observed in April 2013. How-

ever, no significant change in EVPA is apparent dur-

ing the sharp rise in VHE flux observed near the mid-

dle of MJD 56394 or during the dramatic high-energy

activity at the beginning of MJD 56397. For most of

the monitoring period, the optical EVPA was near the

historical most likely angle for this object (EVPA=0◦,

Carnerero et al. 2017), although the one-day excursion

on MJD 56395 brought the EVPA nearly orthogonal to

the most likely value. For comparison, the 15 GHz VLBI

maps of Mrk 421 show a jet detected out to about 5

mas at the position angle of about -40◦ (Lister et al.

2019). In the radio band the activity measured during

the entire nine-day observing period is constant with a

flux of about 0.6 Jy. The single 86 GHz measurement

with IRAM 30m shows a polarization degree of about

3%, which is similar to that of the optical frequencies;

yet the polarization angle differs by about 70◦, which

suggests that the optical and radio emission are being

produced in different locations of the jet of Mrk 421.

Overall, the radio and optical fluxes, as well the optical

polarization variations (polarization degree and EVPA)

appear completely decoupled from the large X-ray and

VHE gamma-ray activity seen in April 2013. In fact,

the behavior observed at radio and optical during April

2013 is similar to the one observed during the previous

months, when Mrk 421 showed extremely low X-ray and

VHE gamma-ray activity (see Baloković et al. 2016).

The hard X-ray and the VHE gamma-ray bands cov-

ered with NuSTAR, MAGIC, and VERITAS are the

most interesting ones because they exhibit the largest

flux variations, and because of the exquisite temporal

coverage and the simultaneity in the dataset. Fig. 2 re-

ports the flux measurements in these bands, each split

into three distinct bands, 3-7 keV, 7-30 keV and 30-

80 keV4 for NuSTAR and 0.2-0.4 TeV, 0.4-0.8 TeV and

>0.8 TeV for MAGIC and VERITAS. The temporal

coverage for the band >0.8 TeV is a about 2 hours longer

than for the band 0.2-0.4 TeV because of the increasing

analysis energy threshold with the increasing zenith an-

gle of the observations. The exquisite characterization

of the multi-band flux variations in the X-ray and VHE

gamma-ray bands reported in Fig. 2 will be used in the

next sections for the broadband variability and correla-

tion studies.

4 The upper edge of the NuSTAR energy range is actually
79 keV, but owing to the negligible impact on the flux values,
in this paper we will use 80 keV for simplicity.
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Figure 2. Light curves in various VHE and X-ray energy bands obtained with data from MAGIC, VERITAS and NuSTAR
(split in 15 minute time bins) and Swift-XRT (from several observations with an average duration of about 17 minutes). For the
sake of clarity, the 0.3-3 keV fluxes have been scaled with a factor 0.5. The statistical uncertainties are in most cases smaller
than the size of the marker used to depict the VHE and X-ray fluxes.

4. MULTI-BAND & MULTI-TIMESCALE

VARIABILITY

4.1. Fractional variability

The flux variability reported in the multi-band light

curves can be quantified using the fractional variability

parameter Fvar, as prescribed in Vaughan et al. (2003):

Fvar =

√
S2− < σ2

err >

< Fγ >2
(2)

< Fγ > denotes the average photon flux, S the standard

deviation of the N flux measurements and < σ2
err > the

mean squared error, all determined for a given instru-

ment and energy band. The uncertainty on Fvar is calcu-

lated using the prescription from Poutanen et al. (2008),

as described in Aleksić et al. (2015a). This formalism

allows one to quantify the variability amplitude, with

uncertainties dominated by the flux measurement er-

rors, and the number of measurements performed. The

systematic uncertainties on the absolute flux measure-

ments5 do not directly add to the uncertainty in Fvar.

The caveats in the usage of Fvar to quantify the vari-

ability in the flux measurements performed with differ-

ent instruments are described in Aleksić et al. (2014,

2015a,b). The most important caveat is that the abil-

ity to quantify the variability depends on the temporal

coverage (observing sampling) and the sensitivity of the

instruments used, which is somewhat different across the

electromagnetic spectrum. A big advantage of the study

presented here is that the temporal coverage for three

bands in X-rays (from NuSTAR) and three bands in

VHE gamma rays (from MAGIC and VERITAS) is ex-

actly the same, which allows us to make a more direct

comparison of the variability in these energy bands.

The fractional variability parameter Fvar was com-

puted using the flux values and uncertainties reported

in the light curves from Section 3 (see Fig. 1 and Fig. 2),

hence providing a quantification of variability amplitude

5 The systematic uncertainties in the flux measurements at the
radio, optical, X-ray and GeV bands are of the order of 10–15%,
while for the VHE bands are ∼20–25%.
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for this nine-day long flaring activity from radio to VHE

gamma-ray energies. The results are depicted in the up-

per panel of Fig. 3, where open markers are used for the

variability computed with all the available data, and the

filled markers are used for simultaneous observations.

Given the slightly different temporal coverage for differ-

ent VHE bands, as described in the previous section, we

decided to use the 0.2–0.4 TeV band to define the time

slots for simultaneous X-ray/VHE observations. This

ensures that the same temporal bins are being used for

the 3×3 X-ray and VHE bands. For comparison pur-

poses, we added the Fvar values obtained for the period

January to March 2013, when Mrk 421 showed a very

low activity (see Baloković et al. 2016).

The fractional variability plot shows the typical

double-bump structure, which is anlogous to the broad-

band SED. This plot shows that most of the flux varia-

tions occur in the X-ray and VHE bands, which corre-

spond to the falling segments of the SED. Additionally,

it also shows that, during the nine-day flaring activity

in April 2013, the amplitude variability in the hard X-

ray band was substantially larger than that measured

during the low activity from January to March 2013.

The higher the X-ray energy, the larger the difference

between the Fvar values from the low and the high

activity.

In addition to the study of nine-day behavior, the high

photon fluxes and the deep exposures allow us to com-

pute the Fvar with the single-night light curves from six

consecutive nights (from April 11 to April 17)6, hence

allowing us to study the fractional variability on hour

timescales for three X-ray bands and three VHE gamma-

ray bands. For this study, only simultaneous data (using

the time bins from the 0.2–0.4 TeV band) were used,

which means that the 3×3 X-ray/VHE bands sample

exactly the same source activity. The results are de-

picted in the bottom panels of Fig. 3. In general, all

Fvar values computed with the single-night light curves

are lower than those derived with the 9-day light curve

for the corresponding energy band. This is clearly visi-

ble when comparing the data points with the grey shad-

owed regions in the upper panel of Fig. 3. Despite the

X-ray and VHE flux varying on sub-hour timescales,

the resulting intra-night fractional variability is signif-

icantly lower than the overall fractional variability in

the nine-day time interval. This result is expected be-

cause, while for single days the light curves show flux

variations within a factor of about 2, the nine-day light

6 The light curves from April 18 and April 19 contain little data
(∼2 hours) and little variability, which prevents the calculation of
significant (>3 sigma) variability for most of the energy bands.

curve shows flux variations larger than a factor of about

10. Unexpectedly, we find a large diversity in the vari-

ability versus energy patterns observed for the different

days. For the days April 13, 15, 16, 17, one finds the

typical pattern of higher fractional variability at higher

photon energy within each of the two SED bumps. On

the other hand, one finds that the fractional variabil-

ity is approximately constant with energy for the days

April 11 and April 14, and that the fractional variabil-

ity decreases with energy for April 12. The decrease in

Fvar with increasing energy is only marginally signifi-

cant in the VHE bands (∼2σ), but very prominent in

the X-ray emission, which within the synchrotron self-

Compton (SSC) scenario, provides a direct mapping to

the energy of the radiating electrons. These different

variability versus energy patterns suggest the existence

of diverse causes (or regions) responsible for the vari-

ability in the broadband blazar emission on timescales

as short as days and hours. This is the first time that the

variability of Mrk 421 can be studied with this level of

detail, and the implications will be discussed in Section

6.

4.2. Flux variations on multi-hours and sub-hours

timescales

This section focuses on the flux variations observed in

the hard X-ray and VHE gamma-ray bands, which are

the ones with the largest temporal coverage and high-

est variability (see section 4.1). The light curves for all

nights for these 3x3 energy bands are reported in Ap-

pendix B. There is clear intra-night variability in all the

light curves, which can be significantly detected because

of the high fluxes and the good temporal coverage, as

described in the previous section (e.g. see Fig. 3). The

single-night light curves show a large diversity of tem-

poral structures that relate to different timescales, from

sub-hours (i.e. fast variation) to multi-hours (trends).

We note that some of these fast components are present

in both X-rays and VHE gamma rays, while some oth-

ers are visible only at X-rays, or only at VHE gamma

rays, and, in some cases, the features are present only

in specific bands (either X-rays or VHE gamma rays)

and not in the others. As it occurred with the study

of the Fvar vs energy, the evaluation of the single-night

multi-band light curves also suggests that there are dif-

ferent mechanisms responsible for the variability, some

of them being achromatic (affecting all energies in sim-

ilar way) and others chromatic (affecting the different

energy bands in substantially different manner).

In this section we attempt to quantify the main trends

and fast features, as well as their evolution across the

various energy bands. We do that by fitting with a func-
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tion formed by a slow trend Fs(t) and fast feature Ff (t)

components.

F (t) = Fs(t) + Ff (t) (3)

where

Fs(t) = Offset · (1 + Slope · t) (4)

and

Ff (t) =
2

2
− t−t0

trise + 2
t−t0
tfall

·A · Fs(t0) (5)

Here A is the flare amplitude, t is the time since mid-

night for the chosen night, t0 is the time of the peak

flux of the flare, and trise and tfall are the flux-doubling

timescales for the rising and falling part of the flare.

This formulation, with the slope of the slow component

normalized to the offset, and the flare amplitude (of the

fast component) normalized to the slow component at

t0, enables a direct comparison of the parameter values

among the different energy bands, for which the overall

measured flux may differ by factors of a few.

In general, we find that, whenever fast flares occur,

they appear to be quite symmetric and, given the rela-

tively short duration (sub-hour timescales) and the flux

measurement uncertainties, we do not have the ability to

distinguish (in a statistically meaningful way) between

different rise- and fall-doubling times. For the sake of

simplicity, we decided to fit the light curves with a func-

tion given by Eq. 5 where trise = tfall = flux-doubling

time. This fit function provides a fair representation of

the intra-night rapid flux variations from all days but

for April 16, where the flux variations have much longer

(multi-hour) timescales.

This relatively simple function provides a rough de-

scription of the energy-dependent light curves, and may

not describe perfectly well all the data points. For in-

stance, in the low energy X-ray bands, the statistical un-

certainties are very small and one can appreciate signif-

icant and complex substructure that is not reproduced

by the above-described (and relatively simple) fitting

function. We do not intend to find a model that de-

scribes accurately all the data points. Rather we look

for a model that provides a description of the main flux-

variability trends, and how they evolve with the X-ray

and VHE energies.

The multi-band flux variations during April 15 and

its related quantification using Eq. 3 are depicted in

Fig. 4, with the parameters resulting from the fits re-

ported in Table 3. The main multi-band emission varies

on timescales of several hours, and hence it is domi-

nated by the “slow component” in equation 3. The

Slope of this variation (quantified relative to the Offset

in each band for better comparison among all bands)

has a strong energy dependence, with the parameter

value for the highest energies being around a factor

of 2–3 times larger than that for the lowest energies

for both the X-ray and VHE gamma-ray bands (e.g.

Slope>0.8 TeV ' 3 · Slope0.2−0.4 TeV). The second most

important feature of this multi-band light curve is the

existence of a short flare, on the top of the slowly vary-

ing flux, in all the energy bands for both X-ray and

VHE gamma rays. The location of the flare t0 is the

same (within uncertainties) in all the three X-ray bands

and VHE bands. In order to quantify better the lo-

cation of the short flare at X-ray and VHE gamma-

ray energies, using the information from Table 3, we

computed the weighted average separately for the three

VHE bands, t0,VHE = 2.44±0.03 hr and the three X-ray

bands, t0,X-ray = 2.41±0.04 hr past midnight. This indi-

cates that, for this fast feature in the light curve, for all

the energies probed, there is no delay in between X-ray

and VHE gamma-ray emission down to the resolution of

the measurement, which, adding the errors in quadra-

ture, corresponds to 3 minutes. The flux-doubling time

is comparable among all the energy bands, with about

0.3 hours for all the X-ray bands and the highest VHE

band (>0.8 TeV), and about 0.2 hours for the lowest

and middle VHE band. The characteristic by which the

fast X-ray flare differs from the fast VHE flare is in the

normalized flare amplitude A (see Table 3): it is energy-

independent (achromatic) for the X-ray fast flare, while

it increases its value (chromatic) for the VHE fast flare

(with amplitude A>0.8 TeV ' 2 ·A0.2−0.4 TeV).

In order to evaluate potential spectral variability

throughout the ∼10-hour light curves measured on 2013

April 15, we computed the flux hardness ratios HR

(= Fhigh−energy/Flow−energy) for several energy bands

in both X-ray and VHE gamma-ray domains. Fig. 5

depicts the HR computed with the data flux measure-

ments (in time bins of 15 minutes) and the HR expected

from the fitted functions reported in Fig. 4 and Table 3.

For comparison purposes, we also included the HR

from the fitted functions from Table 3 excluding the

fast component given by Eq. 5 (dotted line in Fig. 5).

The dashed vertical red line indicates the weighted

average time of the peak of the flare t0, calculated

separately for the three X-ray bands and VHE gamma-

ray bands (see above). One can see that the overall

impact of the fast component in the HR temporal evo-

lution is small, and only noticeable in some panels (e.g.

F>0.8 TeV/F0.4−0.2 TeV or F7−30 keV/F3−7 keV). This is

due to the relatively short duration of the fast compo-

nent, and the relatively small magnitude of the flare
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Figure 4. Light curves from 2013 April 15 in three X-ray bands (left panel) and three VHE gamma-ray bands (right panel).
The red curve is the result of a fit with the function in Eq. 3, applied to the time interval with simultaneous X-ray and VHE
observations. The resulting model parameters from the fit are reported in Table 3.

Table 3. Parameters resulting from the fit with Eq. 3 to the X-ray and VHE multi-band light curves from 2013
April 15.

Band Offseta Slope Flare Flare Flare χ2/d.o.f

[h−1] Amplitude A flux-doubling timeb [h] t0 [h]

15 April 2013

3-7 keV 0.71 ± 0.01 0.153 ± 0.006 0.49 ± 0.07 0.30 ± 0.04 2.35 ± 0.06 836/24

7-30 keV 0.78 ± 0.02 0.199 ± 0.009 0.59 ± 0.11 0.30 ± 0.04 2.41 ± 0.06 889/24

30-80 keV 0.21 ± 0.01 0.241 ± 0.018 0.56 ± 0.18 0.32 ± 0.09 2.50 ± 0.10 111/24

0.2-0.4 TeV 6.60 ± 0.17 0.031 ± 0.008 0.40 ± 0.09 0.23 ± 0.07 2.41 ± 0.09 96.9/38

0.4-0.8 TeV 2.99 ± 0.07 0.042 ± 0.008 0.72 ± 0.09 0.19 ± 0.03 2.47 ± 0.04 68.1/42

>0.8 TeV 1.68 ± 0.05 0.103 ± 0.010 0.82 ± 0.08 0.27 ± 0.03 2.41 ± 0.04 90.0/45

aFor VHE bands in 10−10 ph cm−2 s−1, for X-ray bands in 10−9 erg cm−2 s−1.
bParameters trise and tfall in Eq. 3 are set to be equal, and correspond to the Flare flux-doubling time in the

Table.

amplitude, in comparison to the overall flux. Therefore,

the temporal evolution of the spectral shape in both

bands, X-ray and VHE, is dominated by the slow com-

ponent, i.e. by the variations with timescales of several

hours.

Besides April 15, we also performed the fit with Eq. 3

to the other five consecutive nights with large X-ray

and VHE gamma-ray simultaneous datasets, namely

all nights from April 11 to April 16 (both included).

The results from these fits are reported in Appendix C

(see Table 7 and Fig. 13-17). It is worth stating that,

when comparing the quantification of the various light

curves with the function Eq. 3, we found diversity among

the fit parameter values and their energy dependencies.

For April 11, we did not find any fast component, and

the flux decreases monotonically through the observa-

tion with energy-independent Slope for both X-ray and

VHE gamma rays (fully achromatic flux variations). On

the other hand, during April 12, the emission increased

throughout the observation, but with a Slope that de-

creases with increasing energy in both X-ray and VHE

gamma rays. This trend is also observed, from a dif-



AASTEX Mrk 421 2013 flare 15

0.2

0.3

0.4

0.5

F(30-80 keV)/F(7-30 keV)

1.0

1.1

1.2

1.3

Fl
ux

 R
at

io

F(7-30 keV)/F(3-7 keV)

-2.0 0.0 2.0 4.0 6.0
Hours from MJD 56397

0.2

0.3

0.4

0.5

F(30-80 keV)/F(3-7 keV)

0.50

0.75

1.00

1.25

F(>0.8 TeV)/F(0.4-0.8 TeV)

0.4

0.5

0.6

Fl
ux

 R
at

io

F(0.4-0.8 TeV)/F(0.2-0.4 TeV)

-2.0 0.0 2.0 4.0 6.0 8.0
Hours from MJD 56397

0.2

0.3

0.4

F(>0.8 TeV)/F(0.2-0.4 TeV)

Figure 5. The X-ray hardness (flux) ratios for several X-ray (NuSTAR) bands (left panel) and VHE (MAGIC+VERITAS)
bands (right panel) for April 15. In both panels, the dashed red vertical line indicates the average time of the peak of the flare in
VHE t0,VHE = 2.44±0.03 hr, and X-rays t0,X-ray = 2.41±0.04 hr, where the average is calculated for the three bands (Table 3).
The solid grey curve is the ratio of the fitted functions with parameters reported in Table 3, and the dashed grey line is the
ratio of the same fitted functions, but this time excluding the fast component.

ferent perspective, in the bottom-right panel of Fig. 3,

which displays a decreasing Fvar with increasing energy

for both the X-ray and VHE gamma-ray emission from

April 12. This is a very interesting behavior because

it is opposite to the trend reported in most datasets

from Mrk 421, where the variability increases with en-

ergy. For this night, we can also see a fast X-ray flare

(flux-doubling time of about 0.3 hours) whose ampli-

tude increases with energy. Unfortunately, this fast X-

ray flare occurred during a time window without VHE

observations.

For April 13, we also observed a slow flux variation

with an energy-independent Slope, as in April 11, but

this time with a flux increase, instead of a decrease. Ad-

ditionally, we did observe a super-fast X-ray flare (flux-

doubling time of 5±1 minutes) without any counterpart

in the VHE light curve, i.e. an ’orphan’ X-ray flare (see

Fig. 15). As shown in Table 7, the X-ray NusTAR flare

amplitude relative to the overall baseline is only about

11%, but it is significant (3–4σ depending on the en-

ergy band) and there is no correlated flux variation in

the simultaneous VHE MAGIC fluxes, which have flux

uncertainties of about 5%.

During April 14th we see again a monotonically de-

creasing flux with an energy-independent Slope for both

X-ray and VHE gamma rays, with another fast X-ray

flare (flux-doubling time ∼ 0.5 hours) without counter-

part in the VHE light curve.

The night that differs most is April 16, which does not

show any monotonic increase or decrease, and a largely

non-symmetric flare with flux variation timescales of

hours. In order to quantify the temporal multi-band

evolution of the flux during April 16, we used Eq. 5 (i.e.

the fitting function without the slow component), with

trise 6= tfall. See Appendix C for further details about

the quantification of the multi-band flux variations dur-

ing the six consecutive nights, from April 11 to April

16.

In summary, during these six consecutive nights with

enhanced activity and with multi-hour long X-ray/VHE

simultaneous exposures in April 2013, we found achro-

matic and chromatic flux variability with timescales

spanning from multi-hours to sub-hours, and several X-

ray fast flares without VHE gamma-ray counterparts.

We did not see any VHE gamma-ray orphan fast flare

(whenever we had simultaneous X-ray coverage). How-

ever, we did observe fast flares in some specific energy

bands which are not detected in the other nearby en-

ergy bands (X-ray or VHE); which suggests the presence

of flaring mechanisms affecting relatively narrow energy

bands.

The temporal evolution of the X-ray and VHE emis-

sion, and the particularity of being able to approxi-

mately describe it with a two-component function with

a fast (sub-hour variability timescale) and slow (multi-

hour variability), will be discussed in section 6.
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Table 4. Correlation coefficients and slopes of the linear fit to the VHE vs. X-ray flux (in log scale) derived
with the 9-day flaring episode of Mrk 421 in April 2013.

VHE band X-ray band Pearson coeff.a Nσ Pearsona DCF Linear fit slope χ2/d.o.f

0.2-0.4 TeV 3-7 keV 0.92 ± 0.01 20.2 0.93 ± 0.12 0.61 ± 0.02 1183 / 162

7-30 keV 0.87 ± 0.02 17.0 0.88 ± 0.11 0.45 ± 0.03 1891 / 162

30-80 keV 0.79 ± 0.03 13.6 0.81 ± 0.11 0.35 ± 0.02 2277 / 162

0.4-0.8 TeV 3-7 keV 0.946+0.007
−0.009 23.4 0.96 ± 0.11 0.79 ± 0.03 1038 / 170

7-30 keV 0.91 ± 0.01 19.8 0.92 ± 0.11 0.58 ± 0.03 1725 / 170

30-80 keV 0.84 ± 0.02 15.8 0.86 ± 0.11 0.45 ± 0.03 2160 / 170

>0.8 TeV 3-7 keV 0.964+0.005
−0.006 26.0 0.97 ± 0.11 1.11 ± 0.03 704 / 170

7-30 keV 0.947+0.007
−0.008 23.5 0.96 ± 0.11 0.81 ± 0.03 1245 / 170

30-80 keV 0.89 ± 0.02 18.6 0.91 ± 0.10 0.61 ± 0.03 1736 / 170

aThe Pearson correlation function 1σ errors and the significance of the correlation are calculated following
Press et al. (2002).

5. UNPRECEDENTED STUDY OF THE

MULTI-BAND X-RAY AND VHE GAMMA-RAY

CORRELATIONS

We evaluated the correlations among all the frequen-

cies covered during the April 2013 flare, and found that

the largest flux variations and the largest degree of

flux correlation occurs in the X-ray and VHE gamma-

ray bands. No correlation was found among the ra-

dio, optical and gamma-ray bands, a result that was

expected because of the lower activity and longer vari-

ability timescales at these energies. Apart from some

variability in the GeV flux around April 15, which is the

day with the highest X-ray activity, the GeV emission

appears constant for the 12-hour time intervals related

to flux variations by factors of a few at keV and TeV

energies. If the GeV and TeV fluxes were correlated on

12-hour time scales, Fermi-LAT should have detected

large flux variations, and hence we can exclude this cor-

relation.

The quality and extent of this dataset, both in time

and energy, allows for a X-ray/VHE correlation study

that is unprecedented among all datasets collected from

Mrk 421, and any other TeV blazar. The relation be-

tween the VHE gamma-ray and the X-ray fluxes in the

3×3 energy bands is shown in Fig. 6 for the 9-day flar-

ing activity, and in Fig. 7 for April 15th. The Discrete

Correlation Function (DCF) and Pearson correlation co-

efficients, as well as the slope of the VHE versus X-ray

flux are reported in Table 4. There is a clear pattern:

the strength of the correlation increases for higher VHE

bands and lower X-ray bands. The strongest correlation

is observed between the 3–7 keV and >0.8 TeV bands.

This combination of bands also shows a slope (from the

fit in Table 4) closest to 1, among all the 3×3 bands

reported. Moreover, the scatter in the plots is smaller

as we increase the VHE band and decrease the X-ray

energy band. The smallest scatter, which can be quan-

tified with the χ2 of the fit (lower values of χ2 relate to

smaller scatter in the data points), occurs for the com-

bination >0.8 TeV and 3-7 keV.

Fig. 6 reveals that the different days occupy (roughly)

different regions in the VHE versus X-ray flux plots (for

all the 3×3 bands). This is expected because the largest

flux changes occur on day-long timescales. In addition,

individual days appear to show different patterns. In

order to better characterize these different patterns (ob-

served for the different days), we also computed the same

quantities (DCF, Pearson and linear fit) to the simulta-

neous data points from the single nights with multi-hour

light curves (namely April 11-16). The results are re-

ported in Table 9, in Appendix D.

The main conclusions from this study performed on

data from April 11 to April 16 are the following7:

• In some nights, namely on April 15 and April 16,

Mrk 421 shows the “general trend” that is ob-

served for the full 9-day flaring activity, with the

highest magnitude and significance in the correla-

7 On the nights April 17-19, both the level of activity of Mrk 421
and the amount of data collected was substantially smaller, which
prevents us from making detailed studies of the multi-band corre-
lations.



AASTEX Mrk 421 2013 flare 17

0.1

1

10

Fl
ux

 (0
.2

-0
.4

 T
eV

)
[1

0
10

 p
h 

cm
2  

s
1 ]

11 April 2013
12 April 2013
13 April 2013
14 April 2013
15 April 2013

16 April 2013
17 April 2013
18 April 2013
19 April 2013

0.1

1

10

Fl
ux

 (0
.4

-0
.8

 T
eV

)
[1

0
10

 p
h 

cm
2  

s
1 ]

0.01 0.1 1
Flux (3-7 keV)

[10 9 erg cm 2 s 1]

0.1

1

10

Fl
ux

 (>
0.

8 
Te

V
)

[1
0

10
 p

h 
cm

2  
s

1 ]

0.01 0.1 1
Flux (7-30 keV)

[10 9 erg cm 2 s 1]

0.01 0.1 1
Flux (30-80 keV)

[10 9 erg cm 2 s 1]
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tion occurring for the >0.8 TeV versus the 3–7 keV

bands.

• In other nights, namely on April 11, 13-14, the

general trend from the 9-day data set is less visible:

there is a larger similarity in the magnitude and

significance of the correlation among the various

energy bands.

• In one night, April 12, we found no correlation

between the X-ray and VHE gamma-ray bands,

despite the significant variability in both bands.

The lack of correlation between X-ray and VHE

gamma rays (being both highly variable and char-

acterized with simultaneous observations) has not

been observed to date in Mrk 421, although it has

been observed in another HBL (PKS 2155-304, in

August-September 2008, Aharonian et al. 2009).

The correlation study was also performed splitting the

data set into two subsets: (a) April 15, 16, and 17 (which

appear somewhat away from the main trend in Fig. 6);

and (b) April 11, 12, 13, 14, 18, and 19. In compari-

son to the nine-day data set, the two subsets analyzed

separately yields a reduction of the scatter of the flux

points around the main trends (which show up as a no-

ticeable reduction in the χ2 values from the fit), and

also a smaller dependence of the magnitude and signif-

icance of the correlations with the specific combination

of VHE and X-ray energy bands. The largest linear fit

slope occurs for the combination >0.8 TeV and 3-7 keV

in both subsets (as with the nine-day data set), but

while for subset (a) we continue having the largest sig-

nificance and magnitude of the correlation for >0.8 TeV

and 3-7 keV, in subset (b) the change in magnitude and

correlation with energy bands is much smaller, and the

highest values occur for >0.8 TeV and 7-30 keV. This in-
dicates a somewhat different physical state of the source

during those three consecutive days (April 15,16 and 17)

with respect to the others.

Besides the VHE gamma-ray and the X-ray fluxes in

the 3×3 energy bands for April 15, Fig. 7 depicts also

the flux-flux values from the fitted functions reported

in Section 4.2. This figure shows that multiple compo-

nents in the flux evolution (e.g. fast component on the

top of the slow component) appear as “different trends”

in the flux-flux plots with the flaring component hav-

ing sharper VHE flux rise (with increasing X-ray flux)

than the slow component. Because of the statistical un-

certainties in the flux measurements, as well as the fact

that one component has a much smaller flux and shorter

duration, even for very good datasets such as this one,

it is not easy to recognize and separate the contribution

of different components in the flux-flux plots. However,

these different patterns can produce collective deviations

(when considering many of these different single-trends)

that are statistically significant when fitting the data

points in the flux-flux plots with simple trends, such as

the linear or quadratic functions in the log-log scale.

The discussion of these observational results is given

in Section 6.

6. DISCUSSION OF THE RESULTS

Although detailed spectral energy distribution and

light curve modeling are beyond the scope of this paper,

we discuss the main results of our analysis and provide

possible interpretations.

6.1. Minimum Doppler factor

In general, VHE gamma rays can interact with

low-energy synchrotron photons in order to produce

electron-positron pairs. If both VHE gamma-ray and

low-energy photons are produced in the same region,

then the criterion that this attenuation is avoided so that

the VHE gamma rays may escape from the source and

be detected leads to a lower limit on the Doppler factor

(Dondi & Ghisellini 1995; Tavecchio et al. 1998; Finke

et al. 2008). Owing to the detection of 10 TeV photons

from Mrk 421 during this flaring activity, the relevant

observed synchrotron frequency for their attenuation is

close to 6 × 1012 Hz. In the R band (ν ∼ 4.5 × 1014

Hz), the observed flux is close to 50 mJy on 2013 April

15. Using 12 min as the shortest variability timescale

(see Table 3), and extrapolating the R band flux to

6 × 1012 Hz assuming the same spectral shape as the

one obtained from the long-term SED (i.e., photon index

∼ 1.6, Abdo et al. 2011), one finds δ & 35, which lies

to the high-end of values derived from SED modeling

of Fermi-LAT detected blazars (Ghisellini et al. 2010;

Tavecchio et al. 2010; Paliya et al. 2017). The derived

lower limit can be relaxed if the gamma-ray and optical

emitting regions are decoupled, but the actual value

would depend on the details of the theoretical model.

6.2. Flux-flux correlations

Flux-flux correlations have been the focus of many

multi-wavelength campaigns during active and low

states of blazar emission (for Mrk 421, see e.g. Maraschi

et al. 1998; Fossati et al. 2008; Aleksić et al. 2015b),

because their study may differentiate among emission

models (see e.g. Krawczynski et al. 2002). Fossati et al.

(2008), in particular, studied the correlations on a daily
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basis between TeV fluxes (E > 0.4 TeV) and X-ray

fluxes, mostly in the 2–10 keV band, but also in the

2–4 keV, 9–15 keV and 20–60 keV bands. The work we

show here goes one step further, as it allows for the first

time, to study flux-flux correlations between multiple

VHE gamma-ray and X-ray energy bands on a daily

basis and down to 15-min time bins.

The overall strong correlation found between the

>0.8 TeV band and the lowest energy X-ray band

(3–7 keV; Fig. 6 and Table 9) implies that the emis-

sions are most likely co-spatial and they are produced

by electrons with approximately the same energy via

synchrotron in X-rays and SSC processes in gamma

rays. In TeV blazars, like Mrk 421, the peak of the SSC

spectrum is typically produced by inverse Compton

scatterings in the Klein-Nishina regime (e.g., Tavecchio

& Ghisellini 2016).

The results presented in Section 5 reveal, however,

a more complicated picture, as the strong correlation

mentioned above weakens or even disappears on certain

days (e.g., 2013 April 12). A weak correlation between

X-rays and gamma rays can be produced if the emissions

are produced by different components (e.g. Petropoulou

2014; Chen et al. 2016) or by different particle popula-

tions, as in lepto-hadronic models (Mastichiadis et al.

2013). Different strengths of the correlation can be pre-

dicted by adjusting the temporal variations of the model

parameters (e.g., injection rate of accelerated particles)

and/or by having more than one emitting component in

X-rays and gamma rays.

The analysis presented in Section 5 also reveals that

the slope of the correlation between the X-ray bands

and the gamma-ray bands is generally sub-linear, i.e.

Fγ ∝ FmX with m . 1, and changes with time (Table 9).

In the standard (one-zone) SSC scenario, a value m = 2

is expected if only the electron distribution normaliza-

tion is varying with time. Even in this scenario though,

different values of m can be obtained when looking at

correlations between different energy bands in X-rays

and gamma rays (Katarzyński et al. 2005). Moreover,

values m < 2 are possible if several parameters changes

with time (e.g., magnetic field strength and Doppler fac-

tor). Katarzyński et al. (2005) explored in detail these

flux-flux correlations for an SSC model for high-peaked

BL Lac objects like Mrk 421. They showed that m ≤ 1

is expected between energy bands close to the peaks of

the synchrotron and SSC components, if the blob is ex-

panding and the magnetic field is decreasing (see Fig. 4

in Katarzyński et al. 2005). Petropoulou (2014) showed

that in a two-component SSC scenario the slope of the

correlation between 2-10 keV and 0.4-10 TeV may vary

strongly from m ∼ 0 to ∼ 1 on day-long timescales, with

a pattern that depends on the varying model parame-

ter (i.e., injection rate or maximum electron energy). A

quadratic relation between X-rays and gamma rays is

also expected in lepto-hadronic models, where the for-

mer act as targets for the photo-hadronic interactions

of accelerated protons that result in the production of

gamma rays (Dimitrakoudis et al. 2012; Mastichiadis et

al. 2013). A slope of m . 1 can also be produced in pro-

ton synchrotron models, where variations in the electron

and proton injection rates are directly mapped to vari-

ations in the X-ray and gamma-ray flux, respectively

(Mastichiadis et al. 2013). The detailed modeling of the

flux-flux correlations will be the topic of a future study.

6.3. Temporal variability

One of the main results of this work is the detection of

fast-evolving flares on top of a slower evolving emission

in both X-ray and VHE gamma-ray bands. Although

this temporal behavior was qualitatively discussed for

some of the X-ray NuSTAR light curves in Paliya et al.

(2015), here we present a quantitative study of these

characteristics in the X-ray light curves and also the

VHE gamma-ray light curves (see Fig. 4 in Section 4.2

and Figs. 13-17 in Appendix C). In the next paragraphs,

we discuss possible interpretations for the origin of the

multi-band temporal variability.

6.3.1. Acceleration and cooling processes

The rise and decay timescale of a flare may be associ-

ated with the acceleration and cooling timescales of the

radiating electrons. In this case, one can use the fact

that the acceleration and cooling timescales are found

to be equal to estimate the magnetic field of the emit-

ting region, as follows. If electrons undergo Fermi-1 (or

Fermi-2) acceleration, then the acceleration timescale,
in the co-moving frame, can be written as:

t′acc =
2πmecγ

′Na
eB′

(6)

(e.g., Finke et al. 2008) where B′ is the tangled (co-

moving) magnetic field strength, γ′ is the electron

Lorentz factor in the co-moving frame, and Na ≥ 1

is the number of gyrations an electron makes to double

its energy. The synchrotron cooling timescale is

t′syn =
6πmec

2

4cσTB′2γ′
. (7)

Setting t′acc = t′syn results in

B′ =
3e

4σTγ′2Na
. (8)
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The Lorentz factor of electrons producing the peak of

the SSC mission can be estimated as:

γ′b ≈
Essc

δmec2
≈ 5× 104

(
δ

40

)−1(
Essc

1 TeV

)
(9)

where Essc is the observed energy of the peak of the SSC

component. Here we use a value of δ consistent with the

lower limit from γγ pair production (Section 6.1). Here

and from this point forward, we neglect factors of 1 + z

which will be quite small given the redshift of Mrk 421

(z = 0.03). To accelerate electrons to this peak requires

B′ ≈ 9

(
δ

40

)2(
Na
100

)−1
G (10)

Large values of the magnetic field or large values of Na
are required to accelerate electrons to γ′b where t′acc =

t′syn. Similar results were found for the luminous, rapid

flare from PKS 2155−304 in 2006 (Finke et al. 2008).

Acceleration and cooling may control the light curve

time scales, if R′b/c � t′syn = t′acc or R′b � 1.4 ×
1012 (δ/40)−3(Na/100)−2 cm, where R′b is the radius of

a spherical emitting region in the comoving frame. The

required upper limit on R′b is 2–3 orders of magnitude

smaller than typical values for the size of the emitting

region (e.g., Abdo et al. 2011), even for flaring episodes

(e.g., Aleksić et al. 2015b). Additionally, if the flare’s

rise and decay times were dominated by the accelera-

tion and cooling timescales, one would expect the flar-

ing timescales to be energy-dependent; however, they

seem to have the same timescale across energy bands

(see Table 3). Therefore, the timescales of the fast com-

ponent of the light curve are likely controlled by the

light-crossing time of a blob with fixed size. As a re-

sult, they should appear symmetric and with timescales

independent of the energy.

6.3.2. Plasmoids in magnetic reconnection

Magnetic reconnection is invoked as an efficient par-

ticle acceleration process in a variety of astrophysical

sources of non-thermal high-energy radiation including

AGN jets (Romanova & Lovelace 1992; Giannios et al.

2009, 2010; Giannios 2013). It has been proposed that

plasmoids (i.e., blobs of magnetized plasma containing

energetic particles) that are formed and accelerated in

the reconnection regions of jets can serve as high-energy

emission sites in both blazars and radio galaxies (Gi-

annios et al. 2009; Sironi et al. 2015). Petropoulou et

al. 2016, (hereafter, PGS16) presented a semi-analytic

model of flares powered by plasmoids in a reconnection

layer, simplifying the results of detailed particle-in-cell

(PIC) simulations (for a full numerical treatment, see

Christie et al. 2019).

A single plasmoid produces a flare with peak luminos-

ity and flux-doubling timescale that depend on its size

and Doppler beaming. A unique feature of this model

is that the flux-doubling timescale in the rising part of

the flare is mostly determined by the acceleration of the

plasmoid in the layer (i.e., by its bulk motion). As a

result, similar rise timescales should be observed at dif-

ferent energy bands of a flare powered by a single plas-

moid (achromatic behavior). In contrast to the rising

part of a flare, its decay is not constrained by PIC sim-

ulations. By setting the decay timescale to be approx-

imately equal to the rise timescale of the fast flares, as

observed, one can infer the declining rate at which ac-

celerated particles are injected in the plasmoid or the

decay rate of the magnetic field after the plasmoid has

left the layer (PGS16).

No strong spectral evolution is expected during a

flare produced by a single plasmoid (PGS16; Christie

et al. 2019). At any given time though, an observer re-

ceives radiation from a large number of plasmoids in the

layer, having different sizes and Doppler factors. Those

plasmoids that move with mildly relativistic speeds (in

the jet frame) and have intermediate sizes (in terms of

layer’s size) can contribute and even dominate the over-

all emission. The superposition of their emission could

result in a slow varying and more luminous component

of the light curve (Giannios 2013; Christie et al. 2019),

which may exhibit spectral variations and drive the frac-

tional variability on longer timescales than the fast vary-

ing component of the light curve (Christie et al. 2019b,

in preparation).

Energetics & timescales – PGS16 provided simple for-

mulae to estimate the flux-doubling timescale (t1/2) and

peak luminosity (Lpk) of flares produced by individual

plasmoids in a reconnection layer (with half-length L′8)

of a blazar jet (for an illustration, see Fig. 3 in Christie
et al. 2019). The bolometric peak flare luminosity can

be written as:

Lpk,bol =
π

2
βgcw

′2
f δ

4
p,fu

′
e (11)

where βg is the growth rate of a plasmoid, w′f and

δp,f are, respectively, the plasmoid transverse size and

Doppler factor at the end of its lifetime (i.e., when it is

being advected from the layer or when it merges with

a another bigger plasmoid). The Doppler factor takes

into account the relativistic motion of the plasmoid in

the layer and the relativistic motion of the layer itself

(for definition, see Eq. 8 in PGS16). In the above equa-

tion, u′e ' frecLj/4π$
2cβjΓ

2
j , where Γj is the jet’s bulk

8 Primed quantities are measured in the jet’s rest frame.
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Figure 8. Bolometric peak flux of flares produced by plas-
moids of different sizes as a function of the respective flux-
doubling timescale for σ = 10. Colored curves correspond to
different orientations (see inset color bar) of the reconnecting
layer with respect to the jet axis (for an illustration, see Fig. 3
in Christie et al. 2019). Solid thick lines indicate that the
plasmoid Doppler factor & 35, thus satisfying the γγ opacity
constraint (see Section 6.1). The peak bolometric flux and
flux-doubling time of the fast flare observed in April 15 2013
is also shown (black symbol). A choice of larger L′ would
shift the curves horizontally to longer timescales, while an
increase of Γj would shift the curves diagonally towards the
upper left corner of the plot.

Lorentz factor, βj ∼ 1, Lj is the absolute power of a

two-sided jet, $/L′ = εrec/Γjθj is the cross-sectional ra-

dius of the jet, εrec ' 0.15 is the reconnection rate, and

frec ' 0.5 is the fraction of dissipated magnetic energy

transferred to relativistic pairs (e.g., Sironi et al. 2015).

The flux-doubling timescale can be estimated as:

t1/2 ≈
1

cβg

∫ w′f

w′
1/2

dw̃

δp(w̃)
. (12)

where δp is the plasmoid’s Doppler factor (see Eq. 8

in PGS16), which evolves during the plasmoid lifetime

as this accelerates in the layer. Here, w′1/2 is the size of

the plasmoid at the moment the flare luminosity reaches

half of its peak value. For details about the deriva-

tion of Eqs. 11-12 and assumptions therein, we refer the

reader to PGS16. The free parameters of the model are:

the plasma magnetization σ, the orientation of the layer

with respect to the jet axis θ′, the observer’s angle θobs,

L′, Lj, and Γj.

We apply the PGS16 model to the fast flaring activity

observed in Mrk 421. We use as an illustrative exam-

ple the results for 2013 April 15, where fast flares with

similar flux-doubling timescales (Table 3) have been de-

tected in all energy bands (3−7 keV, 7−30 keV, 30−80

keV, 0.2−0.4 TeV, 0.4−0.8 TeV, > 0.8 TeV). Using the

peak flux of the fast flare in each energy band, we es-

timate the peak bolometric luminosity of the fast flare.

Given the similar rise timescales in all bands, we use

their mean value as the observed t1/2 of the fast flare

(see black symbol in Fig. 8).

We consider a case with plasma magnetization σ = 10.

Besides the microphysical parameters, which are bench-

marked with PIC simulations of reconnection (see Ta-

ble 1 in PGS16), we adopt the following values for the

free parameters of the model: L′ = 4 × 1015 cm, Lj =

2 × 1046 erg s−1, Γj = 14, and θobs = (2Γj)
−1 ' 2.1o.

Using Eqs. 11 and 12 we can then estimate the peak

flux and flux-doubling timescale of flares produced by

plasmoids with different sizes, as shown in Fig. 8. We

note that the curves showing the different orientations

of the reconnecting layer do not depend monotonically

on θ′ due to the kinematics of plasmoids in the jet (for

details, see PGS16). For the adopted parameter values,

we find that a larger range of θ′ values results in fluxes

and flux-doubling timescales that are compatible with

the observed values. A choice of larger L′ would just

shift the curves horizontally to longer timescales, while

an increase of Γj would shift the curves diagonally to-

wards the upper left corner of the plot (for scalings, see

equations (33)–(37) in PSG16). A higher σ value would

have a similar effect as that of a higher Γj, as it would

result in stronger relativistic motions of the plasmoids

in the layer. The predicted peak flux depends strongly

on the angle at shorter variability timescales, whereas

it is almost independent of the orientation of the layer

at longer timescales. This merely reflects the fact that

flares with longer timescales are produced by the largest

plasmoids in the layer that move with non-relativistic

speeds in the jet frame. For these plasmoids, the beam-

ing of the radiation is basically determined by θobs and

Γj . On the contrary, flares with short durations are pro-

duced by plasmoids that move relativistically in the jet

frame and whose Doppler factor δp depends sensitively

on both angles θ′ and θobs.

Flux-flux correlations – Here we examine the flux-flux

correlations predicted by the model for the fast and slow

components of a plasmoid-powered light curve. To do

so, we adopt the results of Christie et al. (2019) and,

in particular, the light curves computed for a “vanilla”
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Figure 9. VHE flux (> 0.8 TeV) versus X-ray flux (3−7
keV) of a plasmoid-powered light curve, computed for a
“vanilla” model of a BL Lac source (see model BL10 in
Christie et al. 2019). The fluxes are extracted from a 4-hr
time window of the total light curve (see purple line in the
inset plot) and are normalized to their time-averaged values.
The loop-like structure in the flux-flux plot is produced dur-
ing a fast flare of duration ∼ 0.3 hr (see orange points). Lines
with slopes 1 (dashed) and 0.5 (dotted) are overplotted to
guide the eye.

model9 of a BL Lac-like source for σ = 10 (BL10) with

θ′ = 30◦ and θobs = 0◦. The values for the angles cor-

respond to the vanilla BL Lac model of Christie et al.

(2019). A choice of 2.1◦ instead of 0◦ would have no

effect on the conclusions. We focus on a four hour-long

segment of the total light curve that displays a fast flare

(with duration ∼ 0.3 hr) emerging on top of a less vari-

able component (see inset plot in Fig. 9). The fluxes

computed in the 3-7 keV and > 0.8 TeV energy bands

during the selected time window are displayed in the

main panel of Fig. 9 (blue points). The fluxes computed

during the fast flare are highlighted for clarity (oranged

colored points). Although our vanilla model cannot ex-

plain the details of the observed correlations shown in

Fig. 7, the predicted flux-flux correlations bear some

similarities with the observed ones: a tight correlation

with slope close to 1 is produced by the slow component

of the light curve, whereas the fast flare leads to a looser

correlation with a steeper slope.

We note that the temporal resolution of our model

light curve is about 30 s. The loop-like structure pro-

9 Performing detailed radiative transfer calculations, as in
Christie et al. (2019), for parameters similar to those in Fig. 8
lies beyond the scope of this paper.

duced by the fast component would likely be missed in

real data due to the coarser sampling. For example,

even with the 15-min sampling used in this work, the

loop would consist of just two data points. Our results

are also in agreement with those shown in Fig. 7, where

the loop is not evident in the real data, but becomes

visible only when the fitted fluxes of the slow and fast

components are plotted.

Caveats – We next discuss some caveats of the

plasmoid-dominated reconnection model. The fast com-

ponent of the optical light curve is predicted to be wider

than the one seen in X-rays and VHE gamma rays, due

to the longer cooling timescales of electrons radiating in

the optical band. Nevertheless, some degree of correla-

tion between the optical and other high-energy bands is

expected in this model. Unfortunately, this cannot be

tested with our current dataset because we do not have

a proper optical coverage around the peak times of the

fast (sub-hour) flares in X-rays and VHE gamma rays

(see Fig. 1 and Fig. 4, 14, 15, 16). On longer (multi-

hour) timescales, the observed optical flux appears to

roughly follow the temporal trends in X-rays and VHE

gamma rays for some days (e.g., April 13 and April 17),

while it appears to be anti-correlated for some other

days (e.g., April 11, April 12, April 15, and April 18).

Such variability patterns cannot be explained by the

vanilla model we described above. If magnetic recon-

nection can be triggered in different jet locations, then

it is possible to have the formation of multiple layers in

the jet with different properties (e.g., sizes, magnetiza-

tions, and orientations; Giannios et al. 2009; Giannios

& Uzdensky 2019). It is then possible that the ob-

served optical emission is dominated by a different layer

(e.g., larger and with different orientation) than the one

producing the high-energy emissions (e.g., smaller and

more aligned to the observer).

To fully account for all the observed properties of the

flares (i.e., absolute flux and spectra), one would have

to adjust some of the parameters entering the vanilla

model, such as the properties of the injected particle

distribution within each plasmoid (e.g., slope, minimum

and maximum Lorentz factor). The vanilla model de-

scribed above could be improved through the inclu-

sion of continuous slow acceleration of particles within

plasmoids due to plasmoid compression (Petropoulou

& Sironi 2018) and/or impulsive particle injection

with a harder energy spectrum during plasmoid mergers

(Christie et al. 2019).

PGS16 and Christie et al. (2019) developed a radia-

tive model based on the PIC simulations of Sironi et al.

(2016). Although the radiative model takes into account

the plasmoid kinematics and dynamics, it treats each
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plasmoid as a homogeneous source. Thus, this model

cannot be used to predict the polarization signatures of

a reconnection event. This issue has been recently tack-

led in Zhang et al. (2018), where the polarized emission

was computed directly from 2D PIC simulations of re-

connection, demonstrating that the latter can produce

variable optical polarization. Due to the different sim-

ulation setups used in Sironi et al. (2016) and Zhang

et al. (2018), it is not clear how the polarization results

found in the latter study can be applied to the plasmoid-

dominated model discussed here.

7. SUMMARY AND CONCLUSIONS

This manuscript presents results from an exten-

sive multiwavelength campaign in 2013 on the blazar

Mrk 421, which included, for the first time, highly sensi-

tive hard X-ray observations with NuSTAR. The article

focuses on the exceptional flaring activity observed dur-

ing nine consecutive days, from April 11 to April 19,

and complements the results obtained with the low

VHE gamma-ray activity from January to March 2013,

which was reported in Baloković et al. (2016). The

2013-April flaring activity is the brightest detected with

MAGIC to date, and the second brightest observed in

Mrk 421 to date, after the 2010-February flaring activity

reported in VERITAS-MAGIC-2019 (ApJ publication in

press). More important than the bright blazar activity,

is the comprehensive multi-instrument dataset collected

during these nine days, which includes 42 hours with

MAGIC, 27 hours with VERITAS, 18 hours with Swift,

and 71 hours with NuSTAR, out of which 43 hours were

taken simultaneously to the VHE observations from

MAGIC and VERITAS.

Using simultaneous MAGIC-VERITAS observations

of Mrk 421 during this high activity, we noticed that the

VHE gamma-ray flux values from VERITAS are sys-

tematically lower than those from MAGIC throughout

the flaring activity. The flux difference is energy depen-

dent, being about 10% in the 0.2–0.4 TeV band, and

about 30% in the >0.8 TeV band. These differences are

within the quoted systematic uncertainties from both

instruments, and probably related to the absolute en-

ergy reconstruction. In order to perform variability and

correlation studies during single days, the VERITAS

flux values were scaled up to match those from MAGIC

(see Appendix A). The physics results reported in this

manuscript relate to the variations in the VHE gamma-

ray flux and its correlation to the X-ray flux, and hence

do not depend on the absolute value of the VHE gamma-

ray flux. The results reported here would essentially be

the same if we had scaled down the MAGIC fluxes to

match the VERITAS fluxes.

Owing to the large fluxes and the unprecedented

coverage provided by the simultaneous NuSTAR and

MAGIC/VERITAS observations during these nine

consecutive days, this dataset allowed us to evalu-

ate the variability and correlations over three X-ray

bands (3–7 keV, 7–30 keV and 30–80 keV) and three

VHE gamma-ray bands (0.2–0.4 TeV, 0.4–0.8 TeV and

>0.8 TeV) on timescales of 15 minutes, producing the

most detailed X-ray/VHE variability and correlation

study of Mrk 421 to date. This study yielded a number

of results, which we summarise below:

• The fractional variability Fvar vs. energy for the

9-day flaring activity shows a similar pattern to

that during the low X-ray and VHE gamma-ray

activity from Baloković et al. (2016). The Fvar
vs energy shows a double-bump structure with

the highest variability occurring in the X-ray and

VHE gamma-ray bands, while the variability in

radio and optical bands is very low. Additionally,

we find that a) the Fvar values for the highest

X-ray and VHE energies during this 9-day flar-

ing activity are much higher than those from the

low activity reported in Baloković et al. (2016); b)

the Fvar values obtained with data from the sin-

gle nights are much smaller than those obtained

with the 9-day flaring activity, indicating that

the processes with timescales larger than half day

dominate the variability at X-ray and VHE over

the processes that have timescales of hours; and

c) Fvar typically increases with energy for single

nights, in the same way as observed for multi-day

or multi-month timescales; but we also find nights

where Fvar does not increase (or even decreases)

with energy, hence suggesting the existence of dis-

tinct mechanisms (or distinct particle populations

and/or regions) responsible for the variability of

Mrk 421.

• There is significant variability in the optical emis-

sion, as well as in the polarization degree and

EVPA (see Fig. 1), but they are not correlated

to the X-ray and VHE gamma-ray emission. The

optical polarization variations, while statistically

significant, relate to very low polarization degree

(typically less than 5%) and appear to be random

and without any obvious coherent structure. This

is consistent with a multi-zone scenario such as the

one proposed in Marscher (2014), where the sum of

polarization vectors from many zones would result

in a low level of polarization with random fluc-

tuations in both the polarization degree and the

EVPA. At 86 GHz, the polarization degree is also
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low (about 3%), as it happens with the optical

data, but the polarization angle differs by about

70◦, which indicates that the radio and optical

emissions are produced, or at least dominated, by

different regions along the jet of Mrk 421.

• The flux variability measured at GeV is dominated

by the large flux variation around April 15, which

is the day with the highest X-ray activity. Despite

the lower sensitivity of Fermi-LAT, in comparison

to that of the X-ray and VHE gamma-ray instru-

ments, the GeV flux of Mrk 421 can be measured

significantly on 12-hour timescales, and it does not

show the large flux variations (by factors of a few)

that are reported for the X-ray and VHE gamma-

ray energies. Therefore, this observation indicates

that, when considering timescales of days, there is

no correlation between the GeV band and the keV

and TeV bands.

• Differently to the January-to-March 2013 results

reported in Baloković et al. (2016), the light curves

from the April 2013 flaring activity show substan-

tial intra-day variability in both the X-ray and

VHE gamma-ray bands. Moreover, one can clearly

distinguish variability on sub-hour timescales on

the top of flux variations occurring on multi-hour

timescales. The intra-night flux variations were

quantified with a function consisting of an expo-

nential increase and decay (fast component) on the

top of a monotonically increasing or decreasing

flux (slow component). We found out that, within

the X-ray and VHE gamma-ray bands, the param-

eters describing the fast component do not depend

on energy, while the ones describing the slow com-

ponent can depend strongly on the energy. We

also found out that the fast component is sym-

metric (rise time ∼ decay time). This suggests

that the mechanisms that dominate the produc-

tion of the sub-hour flux variability appear to be

“achromatic”, while those responsible for the pro-

duction of the multi-hour flux variability can be

“chromatic”, at least in some cases.

• A lower limit to Doppler factor of 35 was derived

by requiring that the emitting region producing

the fastest VHE variability is optically thin to γγ

pair production (see Section 6.1). This limit im-

plicitly assumes that the low-energy (optical/IR)

and VHE gamma-ray photons are produced in the

same region. However, the multi-band variability

and correlations derived with the 9-day April 2013

flaring activity indicates that these two emissions

are likely originated in different regions, which

would relax the derived lower limit.

• Using the parameters from the fast component, we

find that there are no delays between the X-ray

and VHE gamma-ray emission down to the reso-

lution of our measurement (3 minutes during April

15th). This is the strongest constraint on the cor-

related behavior between X-ray and gamma rays

in Mrk 421, and among the strongest constraints

derived with TeV blazar data until now.

• The correlation between VHE gamma rays and

X-rays is positive (i.e., the VHE gamma-ray emis-

sion increases when the X-ray emission increases);

but there are multiple flavors in the strength and

characteristics of this correlated behavior that

change both across energy (even for nearby en-

ergy bands) and over time (on day timescales).

The strongest correlation occurs between the low-

est X-ray band (3−7 keV) and the highest VHE

gamma-ray band (>0.8 TeV), where one finds an

approximately linear change in the VHE flux with

the X-ray flux. On the other hand, the weakest

correlation occurs between the highest X-ray band

(30−80 keV) and the lowest VHE gamma-ray band

(0.2−0.4 TeV), where the VHE flux changes with

the X-ray flux with a slope of ∼0.3 in log-log scale.

This indicates that the particle population domi-

nating the emission in the 3−7 keV and >0.8 TeV

bands are closely related, while this does not oc-

cur for the bands 30−80 keV and 0.2−0.4 TeV.

The decrease in the magnitude and significance

of the correlation (with respect to the maximum)

when increasing the X-ray energy and decreasing

the VHE gamma-ray energy is expected if the vari-

ability is dominated by the highest energy elec-

trons; but the rapid change in the correlation pat-

tern with energy is remarkable, and it has never

been observed to date neither for Mrk 421 nor for

any other TeV blazar.

• Within the context of a synchrotron/SSC model,

the approximately linear correlation between VHE

and X-ray could be an indication of an expanding

blob with a decreasing magnetic field (Katarzyński

et al. 2005). It could also be an indication of more

than one emitting region (Fossati et al. 2008).

• The temporal and spectral properties of the multi-

band flares disfavor a single-zone interpretation

of the results (see Section 6). A scenario with

multiple zones (and possibly with narrow electron

energy distributions) is likely needed to explain
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the achromatic (chromatic) variability of the fast

(slow) component of the light curves, as well as

the changes of the flux-flux correlation within day-

long timescales. We showed that plasmoids form-

ing in the jet of Mrk 421 due to magnetic recon-

nection might explain some of the main observa-

tional results of this campaign. In this scenario,

the multi-hour flux variations, which are found to

be chromatic for some nights, would be dominated

by the combined emission from various plasmoids

of different sizes and velocities, while the sub-hour

flux variations, which appear to be achromatic,

would be dominated by the emission from a sin-

gle small plasmoid moving with relativistic speeds

along the magnetic reconnection layer. Due to the

different origin of the fast and slow components

of plasmoid-powered light curves, the flux correla-

tions between different energy bands are also ex-

pected to differ. In particular, the reconnection

model predicts tight correlations (with linear or

sub-linear relation between energy bands) for the

slow component of the light curve, and weaker

correlations (with steeper than linear relation be-

tween fluxes) during fast flares. However, the char-

acteristic loop-like structure in the VHE flux vs.

X-ray flux plot of predicted for fast flares is likely

to be missed with the realistic temporal binning.

The accuracy and the level of detail of this study,

which is unmatched among all VHE gamma-ray emit-

ting blazars (including past observations of Mrk 421),

shows a large degree of complexity in the variability and

correlation patterns. This complexity may be present in

other blazars, but it may be difficult to observe owing to

insufficient temporal and energy coverage in the observa-

tions, especially with the instruments that can resolve

the VHE gamma-ray fluxes with high precision. The

study presented here on Mrk 421 sheds some light into

this complex behavior, and represents a pathfinder to

the studies that may be done with the next generation

of ground-based VHE gamma-ray instruments like the

Cherenkov Telescope Array (CTA), which is expected

to resolve many VHE blazars with a level of accuracy

comparable to that of MAGIC and VERITAS to resolve

Mrk 421 during this period of outstanding activity.
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APPENDIX

A. QUANTIFICATION AND CORRECTION OF THE OFFSET BETWEEN MAGIC AND VERITAS FLUX

MEASUREMENTS

The high accuracy in the VHE gamma-ray flux measurements presented in this work reveals an offset in the simul-

taneous MAGIC and VERITAS fluxes. This offset, which is energy-dependent and can reach up to 30%, is within the

flux systematic uncertainties reported by each instrument (on the order of 20–25%). The factor that dominates the

systematic uncertainties in an IACT is the uncertainty on the absolute energy scale calibration. The energy reconstruc-

tion of VHE gamma-ray showers by IACTs relies heavily on Monte Carlo simulations. The main source of systematic

uncertainty on the energy scale is the uncertainty on the “light yield” (i.e. the total light throughput) considered in

these simulations, associated for instance to the average transparency of the atmosphere or the light collection efficiency

of the telescopes. Each instrument tunes these parameters over long periods of time with stable performance (during

years). For this reason, deviations with respect to the considered atmosphere and telescope models are expected for

shorter time-scales on the order of 15% (as discussed in Madhavan & for the VERITAS Collaboration (2013); Aleksić

et al. (2016)).

In order to exploit the excellent coverage of this dataset and perform intra-night VHE gamma-ray flux variability

and X-ray/VHE flux correlation studies, these energy-dependent offsets need to be corrected. This mismatch shows up

prominently when comparing single-night light curves. As an example, the left panel in Fig. 10 displays the multi-band

VHE light curves during the night of April 12th, showing an increasing offset with energy reaching about 30% for the

VHE gamma-ray fluxes with E > 0.8 TeV. We note that an increasing offset with energy is expected if the main source

of this systematic difference between the MAGIC and VERITAS fluxes is the energy scale.

The simplest approach to correct for this difference is to scale the lightcurves of one of the instruments by an

energy-dependent factor. As we have been using throughout this work three different energy ranges (i.e. 0.2–0.4 TeV,

0.4–0.8 TeV, and >0.8 TeV), three different flux ratios need to be calculated to properly correct for this bias. To

calculate these correction factors, two different methods were tested: a) obtain three scaling factors by normalising

the MAGIC and VERITAS fluxes in the three energy bands; and b) calculate the energy-scale correction that makes

MAGIC and VERITAS spectra compatible, and then obtain the three scaling factors for the three energy bands

considered. The first approach is purely agnostic, while the second one assumes that the small mismatch between
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Figure 10. Light curves from April 12th in three VHE gamma-ray energy bands: 0.2-0.4 TeV, 0.4-0.8 TeV and >0.8 TeV, as
measured with MAGIC and VERITAS before (left) and after (right) applying the correction factors from Table 5. The temporal
coverage (i.e. number of data points) varies with the energy band because of the increasing energy threshold with the increasing
zenith angle of the observations (see Sect. 2 for further details).

MAGIC and VERITAS VHE gamma-ray measured fluxes is dominated by the systematic uncertainty on the energy

scale of each instrument. Both strategies make use of the 2h 45min simultaneous MAGIC and VERITAS observations

taken during four different nights (see Tab. 1).

Inferring the correction factor from available simultaneous data is the most direct method to calculate these factors;

but it cannot be applied to the 0.2–0.4 TeV energy band because the simultaneous MAGIC-VERITAS data relate to

MAGIC observations at zenith angle above 55◦, which have an analysis energy threshold above 0.3 TeV (see Sect. 2).

Fig. 11 shows a comparison of the VHE gamma-ray fluxes (in the two available energy bands) derived with simultaneous

15-min time bins, which span throughout four consecutive nights: from April 12 to April 15.

The figure shows two important characteristics of this offset. First, the ratio at a given energy band is approximately

the same for all the simultaneous observations, hence indicating a systematic effect between MAGIC and VERITAS,

which is not related to the peculiarity of one single day (e.g. bad weather in one of the two telescope sites). Second, the

ratio of MAGIC and VERITAS fluxes deviates from 1 by a larger amount in the highest energy band, hence confirming

the energy dependence of the offset. The correction factors and uncertainties inferred with this method are reported

in the first column of Table 5.

As described in Aleksić et al. (2016), MAGIC analysis allows to test the impact of a modified light yield over a

given reconstructed spectral energy distribution (SED). By applying relative light yield corrections to the MAGIC

data simultaneous with VERITAS, we are able to test which value minimizes the MAGIC-VERITAS SED differences.

This search determined that a decrease of 20% in the MAGIC light makes the simultaneous MAGIC and VERITAS

spectra compatible10. The flux correction factors for the three energy ranges considered here were then computed

through the ratio of the pre- and post-light-yield-corrected MAGIC lightcurves in the three energy bands. In order

to reduce the statistical uncertainties, we used the full MAGIC data set from these four nights (April 12-15), instead

10 A similar effect is expected while increasing the light yield of VERITAS, but these tests were only possible over MAGIC data.
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Figure 11. Comparison of the VHE gamma-ray fluxes measured with MAGIC and VERITAS for the 15-min time intervals of
simultaneous MAGIC-VERITAS observations.

Table 5. Scaling factors (defined as FVERITAS / FMAGIC) inferred from two different methods (see text for further details)
for the three VHE gamma-ray energy bands considered. The values reported correspond to the best fit value and the related
statistical uncertainty. Both methods use data from simultaneous MAGIC-VERITAS observations.

Energy band Flux ratio Energy-scale corr.

0.2–0.4 TeV - 0.88 ± 0.03

0.4–0.8 TeV 0.78 ± 0.03 0.82 ± 0.06

> 0.8 TeV 0.72 ± 0.02 0.74 ± 0.05

of using only the time intervals with simultaneous MAGIC-VERITAS observations. The flux ratios derived with this

method are reported in the second column of Table 5.

As shown in Table 5, there is a very good agreement in the flux correction factors calculated with these two different

methodologies. From here on, the VERITAS light curves are normalized to those of MAGIC using the method derived

with the energy-scale correction test (second column in Table 5). We chose this method (instead of applying the flux

ratio method) because this one provides a scaling factor for the lowest energy band, 0.2-0.4 TeV, for which we do not

have simultaneous MAGIC-VERITAS data. An example of a light curve after the application of the scaling factors to

the VERITAS fluxes is given in the right panel of Fig. 10.

In order to test the impact of the scaling factor uncertainty on the VHE/X-ray correlations reported in Section 5 and

Tables 4 and 9, we scaled the VERITAS fluxes by a value drawn from a normal distribution with mean and sigma given

by the parameters in Table 5. This was repeated 1000 times, and each time all the correlations were calculated. The

standard deviation of the obtained set of correlation parameters was taken as a measure of the systematic uncertainty

associated to the scaling of the VERITAS fluxes. For the nine-day correlations in Table 4, the systematic uncertainty

was found to be an order of magnitude smaller than the statistical uncertainty. This is expected because the flux-

corrections are of the order of 20%, while the nine-day flaring activity is dominated by flux changes of about one

order of magnitude. On the other hand, the impact of this flux scaling is not negligible for quantities derived with the

single-night light curves, which are dominated by flux changes of about a factor of 2. The uncertainties related to the

flux-scaling are reported as the second uncertainty in Table 9. Typically, these systematic uncertainties are found to

be smaller, or at most comparable, to the statistical uncertainty.
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B. DAILY NORMALIZED LIGHT CURVE SETS

Using the scaling factors from Appendix A, one can now up-scale all the VERITAS flux measurements and produce

single-night light curves with simultaneous VHE and X-ray data spanning about 8–10 hours. The VHE flux measure-

ments can be best compared with the NuSTAR measurements on timescales of 15 minutes, through light curves where

the X-ray and VHE gamma-ray fluxes are normalized so that one can compare the relative differences among them.

In order to enable direct (normalized) flux comparisons between the X-ray and VHE bands, the fluxes are normalized

by calculating the average flux for each night and each band using only data points that have simultaneous VHE

and X-ray observations (filled markers in Fig. 12). The resulting normalization factors are reported in the Table 6.

Subsequently, all the light curve fluxes (including the non-simultaneous data marked with open symbols) are divided

by this normalization factor. To be able to visually compare the intra-night flux changes, all VHE and X-ray band

combinations for each day are shown in Fig. 12. Using the normalization factors from the Table 6, the scaling factors

from Table 5, and the normalized light curves flux points from Fig. 12, one can retrieve the primal X-ray and VHE

light curves from NuSTAR, MAGIC and VERITAS.

Normalized light curves in Fig. 12 all show that, during these few-days-long activity, the X-ray and VHE emissions of

Mrk 421 show quite a number of structures on timescales from multiple hours, and down to timescales smaller than one

hour. They also show remarkable correlations in some of the band combinations for selected nights (e.g. 3-7 keV and

>0.8 TeV bands on 15 April, or 3-7 keV and 0.2-0.4 TeV bands on 11 April). Looking at single day band combinations

plots, one can also explicitly see different trends for the fast and the slow components (e.g. 15 April slow change in

3-7 keV flux is not as perfectly matched in 0.2-0.4 TeV band as is in the highest VHE band, while the fast component

shows comparable agreement).
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Figure 12. Normalized VHE and X-ray light curves with 15-min time bins for 2013 April 11-19 (continuing on following pages).
Successive panels show VHE light curves in three energy bands, namely E > 0.8 TeV, 0.4 − 0.8 TeV, and 0.2 − 0.4 TeV energy
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Figure 12 continued
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Table 6. Normalization factorsa used in the daily light curves reported in Fig. 12.

Day 3 − 7 keV 7 − 30 keV 30 − 80 keV 0.2 − 0.4 TeV 0.4 − 0.8 TeV >0.8 TeV

11 April 2013 0.2657 0.1670 0.02437 3.872 1.312 0.4375

12 April 2013 0.7881 0.6725 0.1291 8.431 3.683 1.834

13 April 2013 1.119 0.9506 0.1737 10.23 4.889 2.713

14 April 2013 0.4043 0.2806 0.04366 5.758 2.286 0.9662

15 April 2013 1.021 1.194 0.3437 7.373 3.493 2.326

16 April 2013 0.4054 0.3498 0.07931 4.211 1.561 0.6639

17 April 2013 0.3190 0.3397 0.1042 2.706 0.9845 0.37643

18 April 2013 0.08387 0.05741 0.007850 2.053 0.5959 0.2168

19 April 2013 0.07172 0.03977 0.005220 1.175 0.3813 0.09668

aMean X-ray fluxes are given in units 10−9 erg cm−2 s−1, and VHE gamma-ray fluxes are given in
10−10 ph cm−2 s−1.

C. FLUX VARIATIONS ON MULTI-HOURS AND

SUB-HOURS TIMESCALES

This section reports the quantification of the X-ray

and VHE gamma-ray multi-band flux variability during

single nights using the templates defined by Eq. 3 in

Section 4.2. The best-fit results obtained with the light

curves from April 11-14 are reported in Table 7, while

the results obtained for April 16 are reported in Table 8.

Below we provide a brief description of the used strategy

and the obtained results for each of the nights.

C.1. 11 April 2013

There are no flares visible in any of the VHE or X-ray

bands. The light curves are not consistent with constant

flux, and are fit with a linear model, i.e. the Slow com-

ponent. The results are shown in Fig. 13. For all the

X-ray and VHE gamma-ray bands from these 10-hour

long light curves, the slopes are all consistent within the

error bars.

C.2. 12 April 2013

There is a clear flare visible in all X-ray bands around

2 hours past midnight; but unfortunately there is a gap

in the VHE coverage for that time interval. Therefore

VHE light curves are fit with a linear function (Slow

component) only. The results are shown in Fig. 14.

All fits are performed only up to 7.7 hrs past midnight.

There is flickering in VHE bands, with light curves in-

consistent with constant flux, and simple linear model or

Slow+Fast component model from section 4.2 does not

describe data well either. Fits with Slow component give

low slope values, consistent with zero for bands above

0.4 TeV.

Slopes of the Slow component decrease with increas-

ing energy in X-ray bands as well, while flare amplitude

increases with energy.

C.3. 13 April 2013

There is a flare visible in the two higher VHE bands,

with the amplitude and the width of the flare both ap-

proximately halved in the 0.4-0.8 TeV band w.r.t. the

> 0.8 TeV band. In the lowest VHE band, there are

flux measurements above the Slow component at the lo-

cation of the flare, but no satisfactory Slow+Fast model

fit (section 4.2) could be obtained. There is a ∼ 2-hour

gap between the MAGIC and VERITAS data, and the

fit is performed only with MAGIC data point, denoted

by using gray instead of green color for VERITAS data

in Fig. 15.

There is no X-ray data covering the time of the VHE

flare. On the other hand, there is a small-amplitude

flare around 2.5 hrs earlier visible in X-ray bands, with-

out obvious counterpart in VHE bands. Being relatively

weak mini-flare, with the highest flux measured at the

same time in all three X-ray bands, the fit is performed

with Slow+Fast model, but with flare time (location)

fixed to the time of the highest flux measurement, at

midnight - 0.24 hrs.

C.4. 14 April 2013

There is no obvious flare component in the VHE

bands, therefore VHE bands are fit with Slow compo-
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nents only (Fig. 16). In X-ray bands the flux goes down,

then increases in a broad flare visible in two lower X-ray

bands, while no such behavior is seen in VHE bands.

Flare amplitudes in X-ray bands are consistent within

the error bars, but there are some data missing during

the time covered by the Fast component, therefore no

definite conclusions about the flaring component can be

made.

The second part of the light curves (about 1 hour after

midinght) has more simple structure, with a significant

decrease in flux. Slow component slopes in all bands are

similar.

C.5. 16 April 2013

There are no characteristic mini-flares in the 10-hour

long light curve from April 16. Instead, there is a promi-

nent rise and then fall light curves from all energy bands.

This behavior cannot be fit by the Slow+Fast model

from section 4.2. Because of that, we modify the model

to exclude the Slow component, and only have a broad

’bump’ with different rise and fall times:

FB (t) =
2

2
− t−t0

trise + 2
t−t0
tfall

·A (C1)

The fit is performed to all three X-ray bands simulta-

neously, giving a unique rise time trise = 1.38± 0.23 hrs,

fall time tfall = 4.96± 0.47 hrs, and break time

t0 = −0.42± 0.34 hrs from midnight, with

χ2/d.o.f. = 582/57. Only flare amplitude is allowed to

vary in different bands, with results reported in Table 8.

After fitting to X-ray data, the function shape is fit to

each VHE band, again allowing only the flare amplitude

to vary. The results, along with the χ2 values for each

band are reported in Table 8.
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Figure 13. Light curves from 2013 April 11 in three X-ray bands (left panel) and three VHE gamma-ray bands (right panel).
The red curve is the resulting fit with the function defined by Eq. 3, whose model parameters are reported in Table 7.

Hours from MJD 56394
0.6

0.8

1.0 NuSTAR 3-7 keV

Hours from MJD 56394
0.5

0.6

0.7

0.8

0.9 NuSTAR 7-30 keV

 -4.0  -2.0   0.0   2.0   4.0   6.0   8.0  10.0
Hours from MJD 56394

0.10

0.15

0.20 NuSTAR 30-80 keVFl
ux

 [1
0

9  
er

g 
cm

2  
s

1 ] Hours from MJD 56394

6

8

10

0.2-0.4 TeV
MAGIC
VERITAS

Hours from MJD 56394

3

4

5

0.4-0.8 TeV 
MAGIC
VERITAS

 -4.0  -2.0   0.0   2.0   4.0   6.0   8.0  10.0
Hours from MJD 56394

1

2

3

4 >0.8 TeV
MAGIC
VERITAS

Fl
ux

 [1
0

10
 p

h 
cm

2  
s

1 ]

Figure 14. Light curves from 2013 April 12 in three X-ray bands (left panel) and three VHE gamma-ray bands (right panel).
The red curve is the resulting fit with the function defined by Eq. 3, whose model parameters are reported in Table 7.
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Figure 15. Light curves from 2013 April 13 in three X-ray bands (left panel) and three VHE gamma-ray bands (right panel).
The red curve is the resulting fit with the function defined by Eq. 3, whose model parameters are reported in Table 7.
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Figure 16. Light curves from 2013 April 14 in three X-ray bands (left panel) and three VHE gamma-ray bands (right panel).
The red curve is the resulting fit with the function defined by Eq. 3, whose model parameters are reported in Table 7.
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Figure 17. Light curves from 2013 April 16 in three X-ray bands (left panel) and three VHE gamma-ray bands (right panel).
The red curve is the resulting fit with the function defined by Eq. C1, whose model parameters are reported in Table 8.
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Table 7. Parameters resulting from the fit with Eq. 3 to the X-ray and VHE multi-band light curves for 2013 April
11-14.

Band Offseta Slope Flare Flare Flare χ2/d.o.f

[h−1] Amplitude A flux-doubling timeb [h] t0 [h]

11 April 2013

3-7 keV 0.326 ± 0.004 −0.057 ± 0.002 - - - 384 / 28

7-30 keV 0.205 ± 0.004 −0.058 ± 0.003 - - - 320 / 28

30-80 keV 0.028 ± 0.001 −0.051 ± 0.007 - - - 37.7 / 28

0.2-0.4 TeV 4.37 ± 0.10 −0.051 ± 0.006 - - - 74.7 / 35

0.4-0.8 TeV 1.50 ± 0.04 −0.055 ± 0.006 - - - 58.1 / 37

>0.8 TeV 0.50 ± 0.02 −0.058 ± 0.007 - - - 44.0 / 37

12 April 2013

3-7 keV 0.70 ± 0.01 0.041 ± 0.003 0.26 ± 0.07 0.34 ± 0.09 2.2 ± 0.1 764 / 28

7-30 keV 0.604 ± 0.009 0.029 ± 0.004 0.44 ± 0.08 0.32 ± 0.05 2.21 ± 0.08 449 / 28

30-80 keV 0.122 ± 0.003 0.013 ± 0.006 0.66 ± 0.12 0.18 ± 0.07 2.5 ± 0.1 53.9 / 28

0.2-0.4 TeV 7.9 ± 0.2 0.019 ± 0.006 - - - 131 / 37

0.4-0.8 TeV 3.51 ± 0.09 0.006 ± 0.007 - - - 146 / 42

>0.8 TeV 1.81 ± 0.04 −0.001 ± 0.006 - - - 122 / 51

13 April 2013

3-7 keV 1.12 ± 0.01 0.15 ± 0.04 0.12 ± 0.04 0.073 ± 0.007 - 237 / 11

7-30 keV 0.94 ± 0.02 0.24 ± 0.05 0.11 ± 0.03 0.089 ± 0.008 - 165 / 11

30-80 keV 0.17 ± 0.01 0.46 ± 0.11 0.053 ± 0.039 0.11 ± 0.02 - 25.3 / 11

0.2-0.4 TeV 10.6 ± 0.2 0.10 ± 0.01 - - - 40.2 / 21

0.4-0.8 TeV 4.97 ± 0.05 0.079 ± 0.006 0.23 ± 0.05 0.098 ± 0.029 2.52 ± 0.05 12.6 / 21

>0.8 TeV 2.74 ± 0.05 0.10 ± 0.01 0.44 ± 0.08 0.17 ± 0.04 2.36 ± 0.07 33.3 / 21

14 April 2013

3-7 keV 0.49 ± 0.03 −0.068 ± 0.005 0.48 ± 0.06 0.42 ± 0.09 2.95 ± 0.09 158 / 21

7-30 keV 0.35 ± 0.02 −0.071 ± 0.004 0.47 ± 0.05 0.35 ± 0.08 2.95 ± 0.09 74.6 / 21

30-80 keV 0.058 ± 0.006 −0.071 ± 0.013 0.50 ± 0.23 0.18 ± 0.13 3.5 ± 0.3 50.8 / 21

0.2-0.4 TeV 8.0 ± 0.3 −0.081 ± 0.005 - - - 75.8 / 41

0.4-0.8 TeV 3.3 ± 0.1 −0.086 ± 0.004 - - - 60.4 / 46

>0.8 TeV 1.54 ± 0.05 −0.100 ± 0.004 - - - 61.5 / 47

aFor VHE bands in 10−10 ph cm−2 s−1, for X-ray bands in 10−9 erg cm−2 s−1.
bParameters trise and tfall in Eq. 3 are set to be equal, and correspond to the flare flux-doubling time in this Table.
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Table 8. Parameters resulting from the fit with Eq. (C1)
to the X-ray and VHE multi-band light curves from 2013
April 16. The three X-ray bands are fit with a single func-
tion, yielding trise = 1.4 ± 0.2 hrs, tfall = 5.0 ± 0.5 hrs,
break time t0 = −0.42 ± 0.34 hrs from midnight, with
χ2/d.o.f. = 582/57.

Band Flare Amplitude Aa χ2/d.o.f.

3-7 keV 0.44 ± 0.02 -

7-30 keV 0.38 ± 0.02 -

30-80 keV 0.083 ± 0.007 -

0.2-0.4 TeV 4.2 ± 0.2 140 / 26

0.4-0.8 TeV 1.57 ± 0.05 55 / 26

>0.8 TeV 0.72 ± 0.02 39 / 26

aThe flare amplitude A is given in in 10−9 erg cm−2 s−1 for
the X-ray bands, and 10−10 ph cm−2 s−1 for the VHE

gamma-ray bands.
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D. SINGLE-DAY FLUX-FLUX CORRELATIONS

In this section we report the quantification of the VHE

vs X-ray correlations for single-night data. In particu-

lar, we report the Pearson correlation coefficients and

related significances, the values of the DCF, and the

slopes and the χ2 values from the linear fits to the

logFVHE − logFX−ray. These numbers are complemen-

tary to those reported in Table 4, which report the same

information for the nine-day data set (instead of single-

night data sets).

Table 9. Single-night correlation coefficients and fit slopes for 2019 April 11-16. The statistical and systematic contributions to the

total uncertainty are reported separately, and in this order.

VHE band X-ray band Pearson coeff. Nσ (Pearson) DCF Linear fit slope χ2/d.o.f

11 April 2013

0.2-0.4 TeV 3-7 keV 0.83+0.05
−0.07 ± 0.02 6.1 0.90 ± 0.21 ± 0.007 0.86 ± 0.09 ± 0.05 43 / 28

7-30 keV 0.84+0.05
−0.07 ± 0.01 6.4 0.92 ± 0.22 ± 0.003 0.83 ± 0.08 ± 0.05 37 / 28

30-80 keV 0.74+0.08
−0.10 ± 0.002 4.9 1.35 ± 0.37 ± 0.02 1.02 ± 0.15 ± 0.07 28 / 28

0.4-0.8 TeV 3-7 keV 0.89+0.03
−0.05 ± 0.04 7.3 1.06 ± 0.26 ± 0.02 1.01 ± 0.09 ± 0.11 26 / 28

7-30 keV 0.86+0.04
−0.06 ± 0.03 6.7 1.03 ± 0.26 ± 0.03 0.95 ± 0.09 ± 0.10 30 / 28

30-80 keV 0.64+0.10
−0.13 ± 0.01 4.0 1.29 ± 0.45 ± 0.06 1.08 ± 0.15 ± 0.13 25 / 28

>0.8 TeV 3-7 keV 0.79+0.06
−0.08 ± 0.04 5.6 1.04 ± 0.28 ± 0.01 1.01 ± 0.13 ± 0.10 28 / 28

7-30 keV 0.78+0.07
−0.09 ± 0.04 5.4 1.03 ± 0.28 ± 0.02 0.96 ± 0.12 ± 0.09 27 / 28

30-80 keV 0.61+0.11
−0.14 ± 0.02 3.7 1.35 ± 0.47 ± 0.05 1.2 ± 0.2 ± 0.1 25 / 28

12 April 2013

0.2-0.4 TeV 3-7 keV 0.26+0.17
−0.19 ± 0.10 1.4 0.31 ± 0.17 ± 0.11 0.21 ± 0.14 ± 0.09 78 / 27

7-30 keV 0.16+0.18
−0.19 ± 0.09 0.8 0.19 ± 0.19 ± 0.10 0.15 ± 0.09 ± 0.09 82 / 27

30-80 keV −0.19+0.19
−0.18 ± 0.07 1.0 −0.31 ± 0.24 ± 0.12 −1.03 ± 0.39 ± 14 66 / 27

0.4-0.8 TeV 3-7 keV 0.05+0.18
−0.19 ± 0.19 0.3 0.06 ± 0.16 ± 0.23 0.02 ± 0.16 ± 0.18 90 / 30

7-30 keV −0.07+0.19
−0.18 ± 0.17 0.4 −0.09 ± 0.18 ± 0.21 −0.12 ± 0.18 ± 0.18 89 / 30

30-80 keV −0.37+0.17
−0.15 ± 0.12 2.1 −0.65 ± 0.27 ± 0.23 −0.76 ± 0.23 ± 20 59 / 30

>0.8 TeV 3-7 keV 0.19+0.17
−0.18 ± 0.19 1.0 0.27 ± 0.25 ± 0.24 0.15 ± 0.14 ± 0.17 61 / 30

7-30 keV 0.18+0.17
−0.18 ± 0.16 1.0 0.26 ± 0.27 ± 0.21 0.18 ± 0.16 ± 0.17 61 / 30

30-80 keV −0.04+0.19
−0.18 ± 0.09 0.2 −0.07 ± 0.36 ± 0.17 0.48 ± 0.20 ± 0.79 61 / 30

13 April 2013∗

0.2-0.4 TeV 3-7 keV 0.74+0.11
−0.17 3.2 0.73 ± 0.24 0.98 ± 0.24 52 / 12

7-30 keV 0.70+0.13
−0.19 2.9 0.69 ± 0.24 0.75 ± 0.21 60 / 12

30-80 keV 0.65+0.14
−0.21 2.6 0.70 ± 0.28 0.58 ± 0.17 49 / 12

0.4-0.8 TeV 3-7 keV 0.86+0.06
−0.11 4.2 0.89 ± 0.25 0.94 ± 0.16 19 / 12

7-30 keV 0.81+0.08
−0.13 3.7 0.84 ± 0.25 0.72 ± 0.15 24 / 12

30-80 keV 0.76+0.10
−0.16 3.3 0.85 ± 0.28 0.50 ± 0.12 23 / 12

>0.8 TeV 3-7 keV 0.873+0.056
−0.094 4.5 0.87 ± 0.22 1.40 ± 0.23 28 / 12

7-30 keV 0.81+0.08
−0.13 3.8 0.81 ± 0.22 1.07 ± 0.23 41 / 12

Table 9 continued
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Table 9 (continued)

VHE band X-ray band Pearson coeff. Nσ (Pearson) DCF Linear fit slope χ2/d.o.f

30-80 keV 0.70+0.12
−0.19 2.9 0.76 ± 0.24 0.85 ± 0.21 36 / 12

14 April 2013

0.2-0.4 TeV 3-7 keV 0.79+0.07
−0.09 ± 0.003 5.2 0.79 ± 0.17 ± 0.002 0.82 ± 0.15 ± 0.05 130 / 25

7-30 keV 0.78+0.07
−0.09 ± 0.003 5.2 0.79 ± 0.16 ± 0.002 0.87 ± 0.15 ± 0.06 126 / 25

30-80 keV 0.45+0.15
−0.18 ± 0.002 2.4 0.55 ± 0.20 ± 0.006 1.5 ± 0.4 ± 0.1 76 / 25

0.4-0.8 TeV 3-7 keV 0.78+0.07
−0.09 ± 0.006 5.3 0.79 ± 0.17 ± 0.006 0.79 ± 0.18 ± 0.11 138 / 27

7-30 keV 0.78+0.07
−0.09 ± 0.009 5.3 0.80 ± 0.17 ± 0.006 0.85 ± 0.19 ± 0.12 138 / 27

30-80 keV 0.41+0.15
−0.17 ± 0.007 2.2 0.51 ± 0.19 ± 0.002 1.7 ± 0.5 ± 0.3 94 / 27

>0.8 TeV 3-7 keV 0.83+0.05
−0.07 ± 0.003 6.1 0.85 ± 0.21 ± 0.007 0.94 ± 0.18 ± 0.10 107 / 27

7-30 keV 0.81+0.06
−0.08 ± 0.006 5.7 0.83 ± 0.19 ± 0.003 0.93 ± 0.19 ± 0.11 112 / 27

30-80 keV 0.42+0.15
−0.17 ± 0.007 2.3 0.51 ± 0.20 ± 0.003 1.6 ± 0.4 ± 0.2 86 / 27

15 April 2013

0.2-0.4 TeV 3-7 keV 0.77+0.07
−0.09 ± 0.04 5.3 0.82 ± 0.20 ± 0.04 0.40 ± 0.05 ± 0.03 68 / 28

7-30 keV 0.75+0.07
−0.10 ± 0.05 5.1 0.81 ± 0.19 ± 0.04 0.33 ± 0.05 ± 0.02 72 / 28

30-80 keV 0.71+0.08
−0.11 ± 0.05 4.6 0.77 ± 0.18 ± 0.05 0.29 ± 0.05 ± 0.02 80 / 28

0.4-0.8 TeV 3-7 keV 0.80+0.06
−0.08 ± 0.08 5.8 0.86 ± 0.19 ± 0.08 0.52 ± 0.07 ± 0.04 80 / 29

7-30 keV 0.78+0.06
−0.09 ± 0.08 5.5 0.84 ± 0.19 ± 0.08 0.41 ± 0.06 ± 0.03 88 / 29

30-80 keV 0.73+0.08
−0.10 ± 0.09 5.0 0.81 ± 0.18 ± 0.09 0.36 ± 0.06 ± 0.03 93 / 29

>0.8 TeV 3-7 keV 0.95 ± 0.02 ± 0.02 9.5 0.94 ± 0.19 ± 0.02 0.91 ± 0.07 ± 0.05 77 / 29

7-30 keV 0.94+0.02
−0.03 ± 0.02 9.1 0.94 ± 0.19 ± 0.02 0.74 ± 0.06 ± 0.04 87 / 29

30-80 keV 0.88+0.04
−0.05 ± 0.03 7.3 0.90 ± 0.15 ± 0.02 0.63 ± 0.06 ± 0.03 90 / 29

16 April 2013

0.2-0.4 TeV 3-7 keV 0.53+0.15
−0.20 ± 0.05 2.5 0.62 ± 0.22 ± 0.05 0.56 ± 0.16 ± 0.04 51 / 18

7-30 keV 0.42+0.18
−0.22 ± 0.06 1.8 0.49 ± 0.24 ± 0.07 0.39 ± 0.16 ± 0.05 62 / 18

30-80 keV 0.21+0.22
−0.24 ± 0.08 0.9 0.47 ± 0.61 ± 0.17 0.77 ± 0.26 ± 0.02 51 / 18

0.4-0.8 TeV 3-7 keV 0.78+0.08
−0.11 ± 0.06 4.3 1.1 ± 0.3 ± 0.07 0.67 ± 0.13 ± 0.09 19 / 18

7-30 keV 0.72+0.10
−0.14 ± 0.09 3.7 1.0 ± 0.3 ± 0.09 0.55 ± 0.13 ± 0.10 23 / 18

30-80 keV 0.61+0.13
−0.17 ± 0.12 2.9 1.6 ± 0.5 ± 0.3 0.68 ± 0.15 ± 0.11 18 / 18

>0.8 TeV 3-7 keV 0.92+0.03
−0.05 ± 0.02 6.5 0.97 ± 0.21 ± 0.01 1.6 ± 0.2 ± 0.09 19 / 18

7-30 keV 0.88+0.04
−0.07 ± 0.03 5.8 0.94 ± 0.23 ± 0.03 1.4 ± 0.2 ± 0.1 27 / 18

30-80 keV 0.64+0.12
−0.17 ± 0.05 3.1 1.3 ± 0.4 ± 0.1 1.8 ± 0.4 ± 0.06 32 / 18

∗There are no simultaneous NuSTAR and VERITAS data on April 13, and hence there is no systematic error associated to the
usage of the flux-scale factors.
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