1,926 research outputs found

    New perspectives on the supernova remnant Puppis A based on a radio polarization study

    Get PDF
    We present a polarization study towards the supernova remnant (SNR) Puppis A based on original observations performed with the Australia Telescope Compact Array. Based on the analysis of a feature detected outside the SNR shell (called 'the tail' throughout the paper), it was possible to disentangle the emission with origin in Puppis A itself from that coming from the foreground Vela SNR. We found a very low polarization fraction, of about 3 per cent on average. The upper limit of the magnetic field component parallel to the line of sight is estimated to be B ~ 20 μG. The statistical behaviour of the magnetic vectors shows two preferential directions, almost perpendicular to each other, which are approximately aligned with the flat edges of Puppis A. A third, narrow peak oriented perpendicular to the Galactic plane suggests the existence of an interstellar magnetic field locally aligned in this direction. There is evidence that the magnetic vectors along the shell are aligned with the shock front direction. The low polarization fraction and the statistical behaviour of the magnetic vectors are compatible with a scenario where the SNR evolves inside a stellar wind bubble with a box-like morphology, produced by the interaction of the different stellar winds, one of them magnetized, launched by the SN progenitor. This scenario can furthermore explain the morphology of Puppis A, rendering little support to the previously accepted picture which involved strong density gradients to explain the flat, eastern edge of the shell.Fil: Reynoso, Estela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Velázquez, P. F.. Universidad Nacional Autónoma de México. Instituto de Ciencias Nucleares; MéxicoFil: Cichowolski, Silvina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    The Hydraulic Mission and the Mexican Hydrocracy: Regulating and Reforming the Flows of Water and Power

    Get PDF
    In Mexico, the hydraulic mission, the centralisation of water control, and the growth of the federal hydraulic bureaucracy (hydrocracy) recursively shaped and reinforced each other during the 20th century. The hydraulic mission entails that the state, embodied in an autonomous hydrocracy, takes the lead in water resources development to capture as much water as possible for human uses. The hydraulic mission was central to the formation of Mexico’s hydrocracy, which highly prized its autonomy. Bureaucratic rivals, political transitions, and economic developments recurrently challenged the hydrocracy’s degree of autonomy. However, driven by the argument that a single water authority should regulate and control the nation’s waters, the hydrocracy consistently managed to renew its, always precarious, autonomy at different political moments in the country’s history. The legacy of the hydraulic mission continues to inform water reforms in Mexico, and largely explains the strong resilience of the Mexican hydrocracy to "deep" institutional change and political transitions. While the emphasis on infrastructure construction has lessened, the hydrocracy has actively renewed its control over water decisions and budgets and has played a remarkably constant, hegemonic role in defining and shaping Mexico’s water laws, policies and institutions

    A non-linear degenerate equation for direct aggregation and traveling wave dynamics

    Get PDF
    The gregarious behavior of individuals of populations is an important factor in avoiding predators or for reproduction. Here, by using a random biased walk approach, we build a model which, after a transformation, takes the general form [u_{t}=[D(u)u_{x}]_{x}+g(u)] . The model involves a density-dependent non-linear diffusion coefficient [D] whose sign changes as the population density [u] increases. For negative values of [D] aggregation occurs, while dispersion occurs for positive values of [D] . We deal with a family of degenerate negative diffusion equations with logistic-like growth rate [g] . We study the one-dimensional traveling wave dynamics for these equations and illustrate our results with a couple of examples. A discussion of the ill-posedness of the partial differential equation problem is included

    An MHD study of SN 1006 and determination of the ambient magnetic field direction

    Get PDF
    In this work we employ an MHD numerical code to reproduce the morphology observed for SN 1006 in radio synchrotron and thermal X-ray emission. We introduce a density discontinuity, in the form of a flat cloud parallel to the Galactic Plane, in order to explain the NW filament observed in optical wavelengths and in thermal X-rays. We compare our models with observations. We also perform a test that contrasts the radio emitting bright limbs of the SNR against the central region, finding additional support to our results. Our main conclusion is that the most probable direction of the ambient magnetic field is on average perpendicular to the Galactic Plane.Comment: 7 pages, 5 figures, accepted by MNRA

    Emission lines from rotating proto-stellar jets with variable velocity profiles. I. Three-dimensional numerical simulation of the non-magnetic case

    Full text link
    Using the Yguazu-a three-dimensional hydrodynamic code, we have computed a set of numerical simulations of heavy, supersonic, radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence). In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile, in agreement with some recent observational evidence found in jets from T Tauri stars which seems to support the presence of a rotation velocity pattern inside the jet beam, near the jet production region. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the H, [O I]6300, [S II]6716 and [N II]6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models. These findings lead us to put forward some caveats on the interpretation of the observed radial velocity distribution from a few outflows from young stellar objects, and we claim that these data should not be directly used as a doubtless confirmation of the magnetocentrifugal wind acceleration models.Comment: 15 pages, 8 figures. Accepted to publication in Astronomy and Astrophysic

    3D MHD simulation of polarized emission in SN 1006

    Get PDF
    We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter QQ, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter QQ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.Comment: 6 pages, 4 figures, accepted by MNRA

    On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study

    Get PDF
    We present a 3D hydrodynamic study of the effects that different stellar wind conditions and planetary wind structures have on the calculated Ly-α\alpha absorptions produced during the transit of HD 209458b. Considering a range of stellar wind speeds \sim[350-800] km s1^{-1}, coronal temperature \sim[3-7] ×106\times10^{6} K and two values of the polytropic index Γ\Gamma \sim[1.01-1.13], while keeping fixed the stellar mass loss rate, we found a that a M˙p\dot M_p range between \sim[3-5] ×1010\times 10^{10}g s1^{-1} give account for the observational absorption in Ly-α\alpha measured for the planetary system. Also, several models with anisotropic evaporation profiles for the planetary escaping atmosphere were carried out, showing that both, the escape through polar regions and through the night side yields larger absorptions than an isotropic planetary wind

    Precessing jets from a moving source and bright X-ray filaments in galaxy clusters

    Full text link
    We present hydrodynamical calculations carried out with the 3D yguazu-a code of a precessing jet model, which interacts with a plane parallel wind. This scenario describes an extragalactic jet, in which the jet source is in motion with respect to the surrounding intra-cluster medium. From the numerical results, synthetic emission maps and spectra in X-ray band were obtained. We compare these predictions with observations of the radio jets emanating from the radio-galaxy 4C 26.42 (in the Abell 1795 galaxy cluster). We find that the general morphology of the radio jets can be described by a point-symmetric precessing jet system interacting with a plane parallel wind (i.e., the intra-cluster medium flowing past the galaxy). We also find that our synthetic X-ray emission maps reproduce the observed large scale structures (with sizes of the order of tens of kpc).Comment: Accepted for publication in A&A - 7 Pages, 6 figure
    corecore