68 research outputs found

    Impact of adverse events, treatment modifications, and dose intensity on survival among patients with advanced renal cell carcinoma treated with first‐line sunitinib: a medical chart review across ten centers in five European countries

    Get PDF
    Angiogenesis inhibitors have become standard of care for advanced and/or metastatic renal cell carcinoma (RCC), but data on the impact of adverse events (AEs) and treatment modifications associated with these agents are limited. Medical records were abstracted at 10 tertiary oncology centers in Europe for 291 patients ≥18 years old treated with sunitinib as first-line treatment for advanced RCC (no prior systemic treatment for advanced disease). Logistic regression models were estimated to compare dose intensity among patients who did and did not experience AEs during the landmark periods (18, 24, and 30 weeks). Cox proportional hazard models were used to explore the possible relationship of low-dose intensity (defined using thresholds of 0.7, 0.8, and 0.9) and treatment modifications during the landmark periods to survival. 64.4% to 67.9% of patients treated with sunitinib reported at least one AE of any grade, and approximately 10% of patients experienced at least one severe (grade 3 or 4) AE. Patients reporting severe AEs were statistically significantly more likely to have dose intensities below either 0.8 or 0.9. Dose intensity below 0.7 and dose discontinuation during all landmark periods were statistically significantly associated with shorter survival time. This study of advanced RCC patients treated with sunitinib in Europe found a significant relationship between AEs and dose intensity. It also found correlations between dose intensity and shorter survival, and between dose discontinuation and shorter survival. These results confirm the importance of tolerable treatment and maintaining dose intensity

    Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks

    Get PDF
    Different force fields for the graphene–CH4 system are proposed including pseudo-atom and full atomistic models. Furthermore, different charge schemes are tested to evaluate the electrostatic interaction for the CH4 dimer. The interaction parameters are optimized by fitting to interaction energies at the DFT level, which were themselves benchmarked against CCSD(T) calculations. The potentials obtained with both the pseudo-atom and full atomistic approaches describe accurately enough the average interaction in the methane dimer as well as in the graphene–methane system. Moreover, the atom–atom potentials also correctly provide the energies associated with different orientations of the molecules. In the atomistic models, charge schemes including small charges allow for the adequate representation of the stability sequence of significant conformations of the methane dimer. Additionally, an intermediate charge of −0.63e on the carbon atom in methane leads to bond energies with errors of ca. 0.07 kcal mol−1 with respect to the CCSD(T) values for the methane dimer. For the graphene–methane interaction, the atom–atom potential model predicts an average interaction energy of 2.89 kcal mol−1, comparable to the experimental interaction energy of 3.00 kcal mol−1. Finally, the presented force fields were used to obtain self-diffusion coefficients that were checked against the experimental value found in the literature. The no-charge and Hirshfeld charge atom–atom models perform extremely well in this respect, while the cheapest potential considered, a pseudo-atom model without charges, still performs reasonably well

    Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps

    Get PDF
    Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites

    Identification and denitrification characteristics of a salt-tolerant denitrifying bacterium Pannonibacter phragmitetus F1

    Get PDF
    A salt-tolerant denitrifying bacterium F1 was isolated in this study, which has high nitrite (NO -N) and nitrate (NO -N) removal abilities. The salt tolerance capacity of strain F1 was further verified and the effects of initial pH, initial NaNO concentration and inoculation size on the denitrification capacity of strain F1 under saline conditions were evaluated. Strain F1 was identified as Pannonibacter phragmitetus and named Pannonibacter phragmitetus F1. This strain can tolerate NaCl concentrations up to 70 g/L, and its most efficient denitrification capacity was observed at NaCl concentrations of 0-10 g/L. Under non-saline condition, the removal percentages of NO -N and NO -N by strain Pannonibacter phragmitetus F1 at pH of 10 and inoculation size of 5% were 100% and 83%, respectively, after cultivation for 5 days. Gas generation was observed during the cultivation, indicating that an efficient denitrification performance was achieved. When pH was 10 and the inoculation size was 5%, both the highest removal percentages of NO -N (99%) and NO -N (95%) by strain Pannonibacter phragmitetus F1 were observed at NaCl concentration of 10 g/L. When the NaCl concentration was 10 g/L, strain Pannonibacter phragmitetus F1 can adapt to a wide range of neutral and alkaline environments (pH of 7-10) and is highly tolerant of NaNO concentration (0.4-1.6 g/L). In conclusion, strain Pannonibacter phragmitetus F1 has a great potential to be applied in the treatment of saline wastewater containing high nitrogen concentrations, e.g. coastal aquaculture wastewater
    corecore