1,348 research outputs found

    Assessing performance of conservation-based Best Management Practices: Coarse vs. fine-scale analysis

    Get PDF
    Background/Questions/Methods
Animal agriculture in the Spring Creek watershed of central Pennsylvania contributes sediment to the stream and ultimately to the Chesapeake Bay. Best Management Practices (BMPs) such as stream bank buffers are intended to intercept sediment moving from heavy-use areas toward the stream. The placement of BMPs on a farm is generally based on untested assumptions about flow paths. Most often, a straight-line distance from the heavy-use area to the stream is assumed to be correct. Our objective was to compare the straight-line path to hydrologic flow paths calculated from fine-, medium- and coarse-grained Digital Elevation Models (DEMs; 1m, 10m, 30m) for 471 mapped heavy-use points within 100m of the stream. The 30m DEMs are the most widely available and require the least processing time. We anticipated that the flow path distance would be longer than the straight-line distance in all cases, that the finest resolution would lead to the most accurate measurement, but that the difference might not be great enough to justify the increased costs. Understanding the changes in path length and direction calculated using more complex methods and higher-resolution source data will enable us to make recommendations on methods to be used in developing conservation management plans.

Results/Conclusions
The medium-(10m DEM) and fine-resolution data (1m DEM) had the smallest differences between the hydrologic flow path and straight-line path: median differences in path length of 20 m for both the 1m and 10m DEMs, and 51m for the 30m DEM. Hydrologic flow paths were significantly longer than straight-line paths for all three scales; BMP placement based on straight-line distances may not be the most effective. Although the overall difference was significantly positive, calculations on the 30m DEMs sometimes produced straight-line paths that were longer than the hydrologic flow paths, apparently due to inaccuracies in the data. Where fine-scale DEMs are available, BMPs might be more effectively situated by considering the corresponding drainage pathways. The very different results produced at the three scales demonstrate that using the finest-grained elevation data may substantially improve placement of BMPs intended to mitigate for heavy animal use areas. The use of 30m DEMs for this purpose should be avoided. Fine-grained data such as 1m-resolution LiDAR-derived DEMs are available for Pennsylvania through PAMAP, and can be incorporated in the planning stages of BMP placement ultimately resulting in reducing agricultural sediment and nutrient loadings into local watersheds and the Chesapeake Bay

    Visible light induced RAFT for asymmetric functionalization of silica mesopores

    Get PDF
    One key feature for bioinspired transport design through nanoscale pores is nanolocal, asymmetric as well as multifunctional nanopore functionalization. Here, we use a visible-light induced, controlled photo electron/energy transfer-reversible addition–fragmentation chain-transfer (PET-RAFT) polymerization for asymmetric polymer placement into mesoporous silica thin films including asymmetric polymer sequence design

    IstmikunÀrvi iatrogeenne vigastus

    Get PDF
    Eesti Arst 2015; 94(9):559–56

    Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation

    Get PDF
    AbstractAn ecohydrological watershed model can be used to develop an efficient watershed management plan for improving water quality. However, karst geology poses unique challenges in accurately simulating management impacts to both surface and groundwater hydrology. Two versions of the Soil and Water Assessment Tool (SWAT), Regular-SWAT and Topo-SWAT (which incorporates variable source area hydrology), were assessed for their robustness in simulating hydrology of the karstic Spring Creek watershed of Centre County, Pennsylvania, USA. Appropriate representations of surface water – groundwater interactions and of spring recharge – discharge areas were critical for simulating this karst watershed. Both Regular-SWAT and Topo-SWAT described the watershed discharge adequately with daily Nash-Sutcliffe efficiencies (NSE) ranging from 0.77 to 0.79 for calibration and 0.68–0.73 for validation, respectively. Because Topo-SWAT more accurately represented measured daily streamflow, with statistically significant improvement of NSE over Regular-SWAT during validation (p-value=0.05) and, unlike Regular-SWAT, had the capability of spatially mapping recharge/infiltration and runoff generation areas within the watershed, Topo-SWAT was selected to predict nutrient and sediment loads. Total watershed load estimates (518t nitrogen/year, 45t phosphorus/year, and 13600t sediment/year) were within 10% of observed values (−9.2% percent bias for nitrogen, 6.6% for phosphorous, and 5.4% for sediment). Nutrient distributions among transport pathways, such as leaching and overland flow, corresponded with observed values. This study demonstrates that Topo-SWAT can be a valuable tool in future studies of agricultural land management change in karst regions
    • 

    corecore