9 research outputs found

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    The second Sandia Fracture Challenge : predictions of ductile failure under quasi-static and moderate-rate dynamic loading

    No full text
    International audienceDuctile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios , such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∌0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile-and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios , but also provides a detailed dataset for non-blind assessment of alternative methods

    Steps toward determination of the size and structure of the broad-line region in active galatic nuclei. 8: an intensive HST, IUE, and ground-based study of NGC 5548

    No full text

    AGN Emission Lines

    No full text

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore